((1)/(2)x+15)+(3x+4)=180

Simple and best practice solution for ((1)/(2)x+15)+(3x+4)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for ((1)/(2)x+15)+(3x+4)=180 equation:



((1)/(2)x+15)+(3x+4)=180
We move all terms to the left:
((1)/(2)x+15)+(3x+4)-(180)=0
Domain of the equation: 2x+15)!=0
x∈R
We get rid of parentheses
1/2x+3x+15+4-180=0
We multiply all the terms by the denominator
3x*2x+15*2x+4*2x-180*2x+1=0
Wy multiply elements
6x^2+30x+8x-360x+1=0
We add all the numbers together, and all the variables
6x^2-322x+1=0
a = 6; b = -322; c = +1;
Δ = b2-4ac
Δ = -3222-4·6·1
Δ = 103660
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{103660}=\sqrt{4*25915}=\sqrt{4}*\sqrt{25915}=2\sqrt{25915}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-322)-2\sqrt{25915}}{2*6}=\frac{322-2\sqrt{25915}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-322)+2\sqrt{25915}}{2*6}=\frac{322+2\sqrt{25915}}{12} $

See similar equations:

| w2=1 | | G(3)=20x+12 | | 4x+4=-5x+22 | | -20=-5x-5+8x | | v/5+11=82 | | 7t+-4=10t | | 2(x-3)=5(x-21) | | −x+8.5(3x+4)=-24.5x+34 | | 2(2x-1)=2x^2+5x-12 | | -(m-6=30m+14 | | 5x+5=-5x+25 | | -112=-8(8c-2) | | F(4)=64(0.5)x | | 2x-8=5x+8-3x | | 216=7.5x | | 16/80=y/100 | | 5y-23=-7(y-7) | |  (8q + 7)=  3 (16 − q) | | -12=1/5(3-x) | | 51​ x−7=43​ +2x−2543​ | | -8w-6=66 | | 5g2−3=77 | | 4(v-7)=-8v+32 | | 132+2j=-7j+-2(4j+2) | | x-50=-9 | | 5t−1=2t+8 | | -144=-9(3+x) | | 4x2+8x+7=4 | | 33=40+v | | x2+0=0 | | -2v+15=7(v-3) | | 4/3(-3/8x+9)=7 |

Equations solver categories