((1.5+x)*4)+((x-1.5)*5)=y

Simple and best practice solution for ((1.5+x)*4)+((x-1.5)*5)=y equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for ((1.5+x)*4)+((x-1.5)*5)=y equation:


Simplifying
((1.5 + x) * 4) + ((x + -1.5) * 5) = y

Reorder the terms for easier multiplication:
(4(1.5 + x)) + ((x + -1.5) * 5) = y
((1.5 * 4 + x * 4)) + ((x + -1.5) * 5) = y
((6 + 4x)) + ((x + -1.5) * 5) = y
(6 + 4x) + ((x + -1.5) * 5) = y

Remove parenthesis around (6 + 4x)
6 + 4x + ((x + -1.5) * 5) = y

Reorder the terms:
6 + 4x + ((-1.5 + x) * 5) = y

Reorder the terms for easier multiplication:
6 + 4x + (5(-1.5 + x)) = y
6 + 4x + ((-1.5 * 5 + x * 5)) = y
6 + 4x + ((-7.5 + 5x)) = y
6 + 4x + (-7.5 + 5x) = y

Remove parenthesis around (-7.5 + 5x)
6 + 4x + -7.5 + 5x = y

Reorder the terms:
6 + -7.5 + 4x + 5x = y

Combine like terms: 6 + -7.5 = -1.5
-1.5 + 4x + 5x = y

Combine like terms: 4x + 5x = 9x
-1.5 + 9x = y

Solving
-1.5 + 9x = y

Solving for variable 'x'.

Move all terms containing x to the left, all other terms to the right.

Add '1.5' to each side of the equation.
-1.5 + 1.5 + 9x = 1.5 + y

Combine like terms: -1.5 + 1.5 = 0.0
0.0 + 9x = 1.5 + y
9x = 1.5 + y

Divide each side by '9'.
x = 0.1666666667 + 0.1111111111y

Simplifying
x = 0.1666666667 + 0.1111111111y

See similar equations:

| 12(10-n)+10n=8(n-12)-4 | | x^2*lnx=y | | 3=x/2-5 | | D/80=1/10 | | 40=x-6(x-6+x-4) | | 16n^2+8n+1=0 | | -4x-12=-24 | | 30=6x/2 | | (q+3)+(q-6)+q=24 | | X+14=-45 | | X^2-xy-15y^2= | | 4(3-1)=20 | | 80=3x-20 | | A/3-7=6 | | 2/3c=12 | | M-1.77=1.44 | | x^3+3x^2-10x-25=0 | | Yz+2zx+3xy+6=0 | | Z-1/3=-9/10 | | 3=5(q+4) | | -7=2x+13 | | -1752+292m=0 | | -10.004=-1.64m | | z-14=1 | | 2x-52=78 | | 5=(4p-2)+1 | | 19y=133 | | 0.5(k+5)=7 | | y+13=29 | | 8(x+1)-2=2(4x+5) | | 2x+52=78 | | 72+76+x=180 |

Equations solver categories