((1/2)e)+3=4+e

Simple and best practice solution for ((1/2)e)+3=4+e equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for ((1/2)e)+3=4+e equation:



((1/2)e)+3=4+e
We move all terms to the left:
((1/2)e)+3-(4+e)=0
Domain of the equation: 2)e)!=0
e!=0/1
e!=0
e∈R
We add all the numbers together, and all the variables
((+1/2)e)-(e+4)+3=0
We get rid of parentheses
((+1/2)e)-e-4+3=0
We multiply all the terms by the denominator
((+1-e*2)e)-4*2)e)+3*2)e)=0
We calculate terms in parentheses: +((+1-e*2)e), so:
(+1-e*2)e
We add all the numbers together, and all the variables
(-e*2+1)e
We multiply parentheses
-2e^2+e
Back to the equation:
+(-2e^2+e)
Wy multiply elements
(-2e^2+e)-16e^2=0
We get rid of parentheses
-2e^2-16e^2+e=0
We add all the numbers together, and all the variables
-18e^2+e=0
a = -18; b = 1; c = 0;
Δ = b2-4ac
Δ = 12-4·(-18)·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$e_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$e_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$e_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-1}{2*-18}=\frac{-2}{-36} =1/18 $
$e_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+1}{2*-18}=\frac{0}{-36} =0 $

See similar equations:

| 6 | | 4h+-5=7 | | -8=10-2j | | 4(10-2x)+2(x+1)=12 | | 6x+5+x=30 | | 6 | | 12a+4=50 | | d^2*d^2=2880*d^2 | | 0,25x+174,95=300. | | 1-3y+4=0 | | x-(8-x)=7x+49 | | 2(5-4x)=46 | | (7x-6)(4x+5)=0 | | 2(x-5)-5(x-2)=x+6-(x-6) | | 200=w(30-w) | | X+5y=34x-5y=-6 | | X+5y=35x-5y=-6 | | 144=2-8(-6+2x) | | X²-4x-11=0 | | 6l/5=10 | | 6/5l=10 | | 10=-2+4k | | 3(×-2)-5x=-2(×+2) | | 3(x-2)-5x=-2(×+2) | | S(x)=-0.0003x^2+0.5x+215 | | 35x+1=259 | | 4x-0.3x=0.6+2.11+28 | | 3y+8=-19 | | (9+x)=35+x | | /3(2x+4)=4(x+4) | | X²+x-810=0 | | 4.2^(2x+1)-9.2^(x+1)=0 |

Equations solver categories