((24x2)-2)/5=24+4

Simple and best practice solution for ((24x2)-2)/5=24+4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for ((24x2)-2)/5=24+4 equation:



((24x^2)-2)/5=24+4
We move all terms to the left:
((24x^2)-2)/5-(24+4)=0
We add all the numbers together, and all the variables
(24x^2-2)/5-28=0
We multiply all the terms by the denominator
(24x^2-2)-28*5=0
We add all the numbers together, and all the variables
(24x^2-2)-140=0
We get rid of parentheses
24x^2-2-140=0
We add all the numbers together, and all the variables
24x^2-142=0
a = 24; b = 0; c = -142;
Δ = b2-4ac
Δ = 02-4·24·(-142)
Δ = 13632
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{13632}=\sqrt{64*213}=\sqrt{64}*\sqrt{213}=8\sqrt{213}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{213}}{2*24}=\frac{0-8\sqrt{213}}{48} =-\frac{8\sqrt{213}}{48} =-\frac{\sqrt{213}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{213}}{2*24}=\frac{0+8\sqrt{213}}{48} =\frac{8\sqrt{213}}{48} =\frac{\sqrt{213}}{6} $

See similar equations:

| 12=∣y/8∣ | | 6x−72=−18 | | 8=-8p | | 3y-5=2y-5 | | 355-p=354 | | 7=10+n/2 | | 19x/4+x/6=x-1/2+x+3/5 | | -v/5=6.8 | | 21=1-4a | | 12x+6=26 | | 0.2d=1 | | -16=9v-7 | | 3(u-13)=9 | | x*x*x*(2x-6)=0 | | -2/5x-3/20x+1/4x=-48 | | 2n-8.9=16.9 | | 5x-(x+3)=1/3(9x+18 | | 2.5(8+3x)=-x-8 | | 7x+2=9x–3 | | 4(2-6n)=-30+2n | | -4(2-6n)=-30+2 | | 2n+8=4n-12 | | 6x−4=7x−3 | | 4.5(y-13.4)=-1.7(-2.3y+13.6) | | -(h+-3)=-3 | | 6y+4=y+9 | | 6t+42=4t+20 | | -a/7+2=6 | | 1)2n-3=5 | | x+32=2x–1 | | 10x-(6x-4)=52 | | -9(x-7)=-7x+49 |

Equations solver categories