If it's not what You are looking for type in the equation solver your own equation and let us solve it.
((2x-2)(x+5))=180
We move all terms to the left:
((2x-2)(x+5))-(180)=0
We multiply parentheses ..
((+2x^2+10x-2x-10))-180=0
We calculate terms in parentheses: +((+2x^2+10x-2x-10)), so:We get rid of parentheses
(+2x^2+10x-2x-10)
We get rid of parentheses
2x^2+10x-2x-10
We add all the numbers together, and all the variables
2x^2+8x-10
Back to the equation:
+(2x^2+8x-10)
2x^2+8x-10-180=0
We add all the numbers together, and all the variables
2x^2+8x-190=0
a = 2; b = 8; c = -190;
Δ = b2-4ac
Δ = 82-4·2·(-190)
Δ = 1584
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1584}=\sqrt{144*11}=\sqrt{144}*\sqrt{11}=12\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-12\sqrt{11}}{2*2}=\frac{-8-12\sqrt{11}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+12\sqrt{11}}{2*2}=\frac{-8+12\sqrt{11}}{4} $
| (3x+2x+x)=180 | | (12x+17)=(23x-5) | | (2)/(5)x+(3)/(7)=1-(4)/(7)x | | 0.4-3.2=1.2b | | 3n.n=3n.3 | | 8/5n-2/3n=23-n/15 | | 0.34x+5.2-3.4x=2.7x+9 | | 4(x-10)=2(x+3) | | -8(x-5)-4=36 | | v+8/6=15 | | 120-v=183 | | 2(4x+8)=-49+9 | | (4x+3)(13x=10) | | 24=2(w-3)+2w | | 3(-22-2k)=6(1+3k) | | 5(2x+8)=-20+40 | | F(15)=-1/5x+6 | | 4=-3x=10 | | c/15+9=15 | | -2(3x+3)=5(2x+2) | | -(1-7x)=-6(-7-x) | | -5(1-5x)=5(6x-2) | | 2x+3=177 | | 6+3x=5+2x | | 21=4-x | | F(-42)=6x+11 | | Y=16x^2-20x-5 | | 6-5/6x=7/^-4 | | (-3)x=15 | | 9x-75=-4x+159 | | 5w-4=8w+2 | | 10+10=-4(7x-5) |