((3/2)x)+4=2x-5

Simple and best practice solution for ((3/2)x)+4=2x-5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for ((3/2)x)+4=2x-5 equation:



((3/2)x)+4=2x-5
We move all terms to the left:
((3/2)x)+4-(2x-5)=0
Domain of the equation: 2)x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
((+3/2)x)-(2x-5)+4=0
We get rid of parentheses
((+3/2)x)-2x+5+4=0
We multiply all the terms by the denominator
((+3-2x*2)x)+5*2)x)+4*2)x)=0
We calculate terms in parentheses: +((+3-2x*2)x), so:
(+3-2x*2)x
We add all the numbers together, and all the variables
(-2x*2+3)x
We multiply parentheses
-4x^2+3x
Back to the equation:
+(-4x^2+3x)
Wy multiply elements
(-4x^2+3x)+20x^2=0
We get rid of parentheses
-4x^2+20x^2+3x=0
We add all the numbers together, and all the variables
16x^2+3x=0
a = 16; b = 3; c = 0;
Δ = b2-4ac
Δ = 32-4·16·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{9}=3$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3}{2*16}=\frac{-6}{32} =-3/16 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3}{2*16}=\frac{0}{32} =0 $

See similar equations:

| 8n-13=13n-8n | | 2*10^(9a)=29 | | 5=2x–6 | | 3(2n+4)=6(n+2) | | t+-11=-10 | | 3g–5= | | k+1=3(k-3) | | 7g-g-4g-2=20 | | 3g–5=9 | | 5x–7=8 | | 2(n+6)=3n-1 | | 16a+3=15 | | 8=5x–7 | | -16m+-16=16 | | 12-y=-y+3 | | 6n-4n+3=17 | | 9=k/3+5 | | 4^w(3^(2w))=8 | | 2=-2(r-10) | | 4t-1=3t+2 | | 1. 2x+7=4 | | n-n+n=16 | | 4c-7=5c | | 10x+6=-3(5x-3)-4 | | 8x−4=8x+5/2 | | 8x−4=8x+52 | | 3(a+2)=6a | | 6d-3d+5=14 | | 3x+4x+5x-9=27 | | 3(r-1)=4(r-1.5) | | 2x-5*4=25 | | 7(2a+1=)+3a |

Equations solver categories