((3m+2)/5m)+((2m-1)/2m)=4

Simple and best practice solution for ((3m+2)/5m)+((2m-1)/2m)=4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for ((3m+2)/5m)+((2m-1)/2m)=4 equation:


m in (-oo:+oo)

m*((3*m+2)/5)+m*((2*m-1)/2) = 4 // - 4

m*((3*m+2)/5)+m*((2*m-1)/2)-4 = 0

(m*(3*m+2))/5+(m*(2*m-1))/2-4 = 0

(2*m*(3*m+2))/(2*5)+(5*m*(2*m-1))/(2*5)+(-4*2*5)/(2*5) = 0

2*m*(3*m+2)+5*m*(2*m-1)-4*2*5 = 0

16*m^2-m-40 = 0

16*m^2-m-40 = 0

16*m^2-m-40 = 0

DELTA = (-1)^2-(-40*4*16)

DELTA = 2561

DELTA > 0

m = (2561^(1/2)+1)/(2*16) or m = (1-2561^(1/2))/(2*16)

m = (2561^(1/2)+1)/32 or m = (1-2561^(1/2))/32

(m-((1-2561^(1/2))/32))*(m-((2561^(1/2)+1)/32)) = 0

((m-((1-2561^(1/2))/32))*(m-((2561^(1/2)+1)/32)))/(2*5) = 0

((m-((1-2561^(1/2))/32))*(m-((2561^(1/2)+1)/32)))/(2*5) = 0 // * 2*5

(m-((1-2561^(1/2))/32))*(m-((2561^(1/2)+1)/32)) = 0

( m-((1-2561^(1/2))/32) )

m-((1-2561^(1/2))/32) = 0 // + (1-2561^(1/2))/32

m = (1-2561^(1/2))/32

( m-((2561^(1/2)+1)/32) )

m-((2561^(1/2)+1)/32) = 0 // + (2561^(1/2)+1)/32

m = (2561^(1/2)+1)/32

m in { (1-2561^(1/2))/32, (2561^(1/2)+1)/32 }

See similar equations:

| z+3=18 | | 2/3x=-1/3-4 | | ((2x+1)/3)-((x-5)/4)=(1/2) | | 7ln(8X)=35 | | 3(9x+2)=11(3-x)+2x | | -3/10(1/6x-5)=61/40 | | x^2+4c+3=0 | | 9(y-5)=2(4y+8)-61 | | -7n(5n+6)=0 | | 7x(5-2f)+7f+4g= | | 5/6+48/6 | | 19-8m=7-6m | | -1/2(2x-4/5)=-19/15 | | 2(y+1)+2(y+5)=30 | | 2/3x-3=17 | | -9(6+4)-24=-10 | | q+7/10=13/4 | | 0.5x+7+1.5=5 | | 2*(12+x)=2x+24 | | 3x+2=150 | | 3s^2+31x+36=0 | | 5/8x=5/9 | | 24+3x=3x+21+-3 | | 28=-4/5x | | 4x^4+20x^2=144 | | 2x^3=9x^2 | | 24+3x=3x+3*(7-1) | | -3(4p+3)-2(6-14p)=3(1+5p) | | (x-4)(2x-10)=0 | | 11+44x=99 | | C=5F-160/9 | | 15-4m-5=32 |

Equations solver categories