((5x+3-2)*27x)*5=23x-4

Simple and best practice solution for ((5x+3-2)*27x)*5=23x-4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for ((5x+3-2)*27x)*5=23x-4 equation:


Simplifying
((5x + 3 + -2) * 27x) * 5 = 23x + -4

Reorder the terms:
((3 + -2 + 5x) * 27x) * 5 = 23x + -4

Combine like terms: 3 + -2 = 1
((1 + 5x) * 27x) * 5 = 23x + -4

Reorder the terms for easier multiplication:
(27x(1 + 5x)) * 5 = 23x + -4
((1 * 27x + 5x * 27x)) * 5 = 23x + -4
((27x + 135x2)) * 5 = 23x + -4

Reorder the terms for easier multiplication:
5(27x + 135x2) = 23x + -4
(27x * 5 + 135x2 * 5) = 23x + -4
(135x + 675x2) = 23x + -4

Reorder the terms:
135x + 675x2 = -4 + 23x

Solving
135x + 675x2 = -4 + 23x

Solving for variable 'x'.

Reorder the terms:
4 + 135x + -23x + 675x2 = -4 + 23x + 4 + -23x

Combine like terms: 135x + -23x = 112x
4 + 112x + 675x2 = -4 + 23x + 4 + -23x

Reorder the terms:
4 + 112x + 675x2 = -4 + 4 + 23x + -23x

Combine like terms: -4 + 4 = 0
4 + 112x + 675x2 = 0 + 23x + -23x
4 + 112x + 675x2 = 23x + -23x

Combine like terms: 23x + -23x = 0
4 + 112x + 675x2 = 0

Begin completing the square.  Divide all terms by
675 the coefficient of the squared term: 

Divide each side by '675'.
0.005925925926 + 0.1659259259x + x2 = 0

Move the constant term to the right:

Add '-0.005925925926' to each side of the equation.
0.005925925926 + 0.1659259259x + -0.005925925926 + x2 = 0 + -0.005925925926

Reorder the terms:
0.005925925926 + -0.005925925926 + 0.1659259259x + x2 = 0 + -0.005925925926

Combine like terms: 0.005925925926 + -0.005925925926 = 0.000000000000
0.000000000000 + 0.1659259259x + x2 = 0 + -0.005925925926
0.1659259259x + x2 = 0 + -0.005925925926

Combine like terms: 0 + -0.005925925926 = -0.005925925926
0.1659259259x + x2 = -0.005925925926

The x term is 0.1659259259x.  Take half its coefficient (0.08296296295).
Square it (0.006882853221) and add it to both sides.

Add '0.006882853221' to each side of the equation.
0.1659259259x + 0.006882853221 + x2 = -0.005925925926 + 0.006882853221

Reorder the terms:
0.006882853221 + 0.1659259259x + x2 = -0.005925925926 + 0.006882853221

Combine like terms: -0.005925925926 + 0.006882853221 = 0.000956927295
0.006882853221 + 0.1659259259x + x2 = 0.000956927295

Factor a perfect square on the left side:
(x + 0.08296296295)(x + 0.08296296295) = 0.000956927295

Calculate the square root of the right side: 0.030934241

Break this problem into two subproblems by setting 
(x + 0.08296296295) equal to 0.030934241 and -0.030934241.

Subproblem 1

x + 0.08296296295 = 0.030934241 Simplifying x + 0.08296296295 = 0.030934241 Reorder the terms: 0.08296296295 + x = 0.030934241 Solving 0.08296296295 + x = 0.030934241 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.08296296295' to each side of the equation. 0.08296296295 + -0.08296296295 + x = 0.030934241 + -0.08296296295 Combine like terms: 0.08296296295 + -0.08296296295 = 0.00000000000 0.00000000000 + x = 0.030934241 + -0.08296296295 x = 0.030934241 + -0.08296296295 Combine like terms: 0.030934241 + -0.08296296295 = -0.05202872195 x = -0.05202872195 Simplifying x = -0.05202872195

Subproblem 2

x + 0.08296296295 = -0.030934241 Simplifying x + 0.08296296295 = -0.030934241 Reorder the terms: 0.08296296295 + x = -0.030934241 Solving 0.08296296295 + x = -0.030934241 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.08296296295' to each side of the equation. 0.08296296295 + -0.08296296295 + x = -0.030934241 + -0.08296296295 Combine like terms: 0.08296296295 + -0.08296296295 = 0.00000000000 0.00000000000 + x = -0.030934241 + -0.08296296295 x = -0.030934241 + -0.08296296295 Combine like terms: -0.030934241 + -0.08296296295 = -0.11389720395 x = -0.11389720395 Simplifying x = -0.11389720395

Solution

The solution to the problem is based on the solutions from the subproblems. x = {-0.05202872195, -0.11389720395}

See similar equations:

| ((5y+3-2)*27y)*5=23x-4 | | 100+0.20x=70-0.50x | | -3(4+3x)=-9 | | 4x^2-8x+2=y | | 6x=1-(4-6x) | | 125-3x=42x+20 | | (5x-3y)*27x= | | log(3)+log(7)= | | 12-10x=86-24x | | 3w-6=4w-2 | | x=59+2500 | | 7-2z=-9 | | a=.5+28 | | 5(2Y-4)=2(5y-10) | | 3(x+4)+5(x+2)=4(x-1)+2 | | 2g+3(-7+3g)=1-g | | 25-3(x-4)=58 | | 6(x+12)-15=61 | | 2u+10=17 | | 2(x-7)-12=6 | | 7+2(x+5)=49 | | 3(x+4)+7=61 | | 3+9q=5+8q | | -3(x-5)=27 | | -4(x+6)=96 | | 2(x-14)=66 | | 5(-3)-15=-4(-3)+12 | | 5(x+6)=120 | | 5(3)-15=-4(3)+12 | | 3(x+2)=24 | | 2(4p-2)=-24 | | (x+4)(x+2)=x-(1-x^2) |

Equations solver categories