((6)/(2x+6))-((5x)/(x+5))=0

Simple and best practice solution for ((6)/(2x+6))-((5x)/(x+5))=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for ((6)/(2x+6))-((5x)/(x+5))=0 equation:



((6)/(2x+6))-((5x)/(x+5))=0
Domain of the equation: (2x+6))!=0
x∈R
Domain of the equation: (x+5))!=0
x∈R
We calculate fractions
(-10x^2-30x)/((2x+6))*x+(6x+30)/((2x+6))*x=0
We multiply all the terms by the denominator
(-10x^2-30x)+(6x+30)=0
We get rid of parentheses
-10x^2-30x+6x+30=0
We add all the numbers together, and all the variables
-10x^2-24x+30=0
a = -10; b = -24; c = +30;
Δ = b2-4ac
Δ = -242-4·(-10)·30
Δ = 1776
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1776}=\sqrt{16*111}=\sqrt{16}*\sqrt{111}=4\sqrt{111}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-4\sqrt{111}}{2*-10}=\frac{24-4\sqrt{111}}{-20} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+4\sqrt{111}}{2*-10}=\frac{24+4\sqrt{111}}{-20} $

See similar equations:

| -6x-2=12x+16 | | 5y+2y=-20 | | 2/5n+6=6 | | 32m=624 | | 10x-1=5x+20 | | 7g=7/9 | | 8-5k=-4k | | 2k=3k+1 | | X/12=y/7 | | -9-q=9+8q | | 20x3+80x2+60x=0 | | Y=7x^2+2x^2+5x-6 | | -3p-10=6p+8 | | 2x+2(x+4)=2(1/2x)+2(x+5) | | 2x+2(x+3)=2(1/2x)+2(x+4) | | 20x3+80x2=-60x | | -9f-8=-8f | | -3(5s-5)-15=-2(9s+3)-2 | | 6(x-1)=20-x | | 3/4x=1/2x+2+1/2 | | 3/4x=1/2x+21/2 | | -m+10=-2m | | 2+2/3x=3/4 | | 60=4000/12*r | | 5j=10+10j | | 12x+17=9x+32 | | 24+2x=3x+2(3·4) | | 8.4x^2-36x-394=0 | | 70=6000/12*r | | 19.95p+2.15p=24.95p+.16p | | -4+7y=-18 | | (X-9)(x-9)=4(x-2) |

Equations solver categories