If it's not what You are looking for type in the equation solver your own equation and let us solve it.
((6+2y)/2)+y-3+((6+2y)/2)=3
We move all terms to the left:
((6+2y)/2)+y-3+((6+2y)/2)-(3)=0
We add all the numbers together, and all the variables
((2y+6)/2)+y+((2y+6)/2)-3-3=0
We add all the numbers together, and all the variables
y+((2y+6)/2)+((2y+6)/2)-6=0
We multiply all the terms by the denominator
y*2)+((2y+6)+((2y+6)-6*2)=0
We calculate terms in parentheses: +((2y+6)-6*2), so:Wy multiply elements
(2y+6)-6*2
We add all the numbers together, and all the variables
(2y+6)-12
We get rid of parentheses
2y+6-12
We add all the numbers together, and all the variables
2y-6
Back to the equation:
+(2y-6)
2y^2+(2y-6)=0
We get rid of parentheses
2y^2+2y-6=0
a = 2; b = 2; c = -6;
Δ = b2-4ac
Δ = 22-4·2·(-6)
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{13}}{2*2}=\frac{-2-2\sqrt{13}}{4} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{13}}{2*2}=\frac{-2+2\sqrt{13}}{4} $
| 25-8x=57 | | (12+4y/4)+y=6 | | (6x-5)/3=5x-9 | | b-12=13;b=25 | | -248=-4x+4(-7x-6) | | 27=w/4+10 | | x/72=4/9 | | 4y=44;y=11 | | x/7=11/5 | | 40=-2/5c | | y/5-17=24 | | 51=2x+13 | | -5-9p=-10-10p | | 2x-3(-4x+4)=-138 | | 38=8x-18 | | 3x=500-50 | | 30+10(x−20)=5 | | 20(2x-8)=40 | | n+17/6=7 | | -12=g/19 | | 1/7x=-0.5 | | 3(11x-5)=279 | | 70=7(p=80) | | 24=j/27 | | 5c+1-6c=-7+2c+2 | | 971=d+24 | | 1/2(x+1)=1/3(2x-5) | | x/5=3=2 | | 2x-5(-3x+3)=138 | | 6c+10(6-c)=40 | | z+20/3=9 | | m+463=943 |