If it's not what You are looking for type in the equation solver your own equation and let us solve it.
((60/x)+2.5)(x-4)=60
We move all terms to the left:
((60/x)+2.5)(x-4)-(60)=0
Domain of the equation: x)+2.5)(x-4)!=0We add all the numbers together, and all the variables
x∈R
((+60/x)+2.5)(x-4)-60=0
We multiply all the terms by the denominator
((+60-60*x)+2.5)(x-4)=0
We calculate terms in parentheses: +((+60-60*x)+2.5)(x-4), so:We multiply parentheses ..
(+60-60*x)+2.5)(x-4
We add all the numbers together, and all the variables
(-60x+60)+2.5)(x-4
We get rid of parentheses
-60x+2.5)(x+60-4
We add all the numbers together, and all the variables
-60x+2.5)(x+56
Back to the equation:
+(-60x+2.5)(x+56)
(-60x^2-3360x+2.5x+140)=0
We get rid of parentheses
-60x^2-3360x+2.5x+140=0
We add all the numbers together, and all the variables
-60x^2-3357.5x+140=0
a = -60; b = -3357.5; c = +140;
Δ = b2-4ac
Δ = -3357.52-4·(-60)·140
Δ = 11306406.25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3357.5)-\sqrt{11306406.25}}{2*-60}=\frac{3357.5-\sqrt{11306406.25}}{-120} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3357.5)+\sqrt{11306406.25}}{2*-60}=\frac{3357.5+\sqrt{11306406.25}}{-120} $
| d−2.8÷0.2=−14 | | 10x-4=2x+60, | | x4+-3x+20=0 | | x^2+2x-8=2x^2-4x | | 25000=x(0.086) | | 5x-16=3x-6, | | 18x^2+18x-7=0 | | 10+k/6=2 | | n2=2.25 | | 33x=28x+66 | | 4(x-2)+2(x+3=6 | | 10x+7=57, | | -5(4-5p)-2=-147 | | X+2x-4=x+2(x-2) | | 33x=22x+66 | | 9=4x+45, | | 81c^2+216c+144=0 | | 40+.9x=100+.8x | | B-4/2=b/2 | | 98=4x+6(3+6x) | | a/8-3/4=5/4 | | 5k^2-6k+3=3 | | 2+1/2h=17 | | 3x^2+15x+10=0 | | 3-7x=x-5 | | -1=-6-8x+3x | | 40+.9x=100×.8x | | 6x/4+-2/4=x-2 | | 6(−3−x)−2x=14 | | 25+6x-1=55 | | -3=1+2a-a | | m−4=2m |