((7+x)(7+x))+((7-x)(7-x))=130

Simple and best practice solution for ((7+x)(7+x))+((7-x)(7-x))=130 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for ((7+x)(7+x))+((7-x)(7-x))=130 equation:



((7+x)(7+x))+((7-x)(7-x))=130
We move all terms to the left:
((7+x)(7+x))+((7-x)(7-x))-(130)=0
We add all the numbers together, and all the variables
((x+7)(x+7))+((-1x+7)(-1x+7))-130=0
We multiply parentheses ..
((+x^2+7x+7x+49))+((-1x+7)(-1x+7))-130=0
We calculate terms in parentheses: +((+x^2+7x+7x+49)), so:
(+x^2+7x+7x+49)
We get rid of parentheses
x^2+7x+7x+49
We add all the numbers together, and all the variables
x^2+14x+49
Back to the equation:
+(x^2+14x+49)
We calculate terms in parentheses: +((-1x+7)(-1x+7)), so:
(-1x+7)(-1x+7)
We multiply parentheses ..
(+x^2-7x-7x+49)
We get rid of parentheses
x^2-7x-7x+49
We add all the numbers together, and all the variables
x^2-14x+49
Back to the equation:
+(x^2-14x+49)
We get rid of parentheses
x^2+x^2+14x-14x+49+49-130=0
We add all the numbers together, and all the variables
2x^2-32=0
a = 2; b = 0; c = -32;
Δ = b2-4ac
Δ = 02-4·2·(-32)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{256}=16$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16}{2*2}=\frac{-16}{4} =-4 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16}{2*2}=\frac{16}{4} =4 $

See similar equations:

| 36+a=+80 | | 36a+57=180 | | 36+57a=180 | | | | 0-4=2x-4-4 | | 37=7+4y | | 4/6x=7/8 | | -0.45(40)+0.8x=0.3(40+x | | 0-5=4x+5-5 | | 0-5=4x+5 | | √5w-10=√2w-1 | | 2i(7-2i)=0 | | 3y^2-8y+1=0 | | 3y^-8y+1=0 | | 2(3w-4)+2w=72 | | 2x=(360÷4 | | 10k-6=-2K17 | | -2x-4(3x-3)=-10x+12 | | 2x+10-x-5=25 | | 6w-8=72 | | 5x/9=1 | | 55+87+x=166 | | 10x+23=17x+23 | | V=10+3t | | 2+7x+6=0 | | 1/x+1/x+16=1 | | x+(8-x)=8 | | 20x-13=15x-89 | | 20=15x-89x-39= | | 5-2a5=17 | | (x+77)+(x+21)=180 | | x+89+79=180 |

Equations solver categories