((n-2)180)/n=140+n

Simple and best practice solution for ((n-2)180)/n=140+n equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for ((n-2)180)/n=140+n equation:



((n-2)180)/n=140+n
We move all terms to the left:
((n-2)180)/n-(140+n)=0
Domain of the equation: n!=0
n∈R
We add all the numbers together, and all the variables
((n-2)180)/n-(n+140)=0
We get rid of parentheses
((n-2)180)/n-n-140=0
We multiply all the terms by the denominator
((n-2)180)-n*n-140*n=0
We calculate terms in parentheses: +((n-2)180), so:
(n-2)180
We multiply parentheses
180n-360
Back to the equation:
+(180n-360)
We add all the numbers together, and all the variables
-140n+(180n-360)-n*n=0
Wy multiply elements
-1n^2-140n+(180n-360)=0
We get rid of parentheses
-1n^2-140n+180n-360=0
We add all the numbers together, and all the variables
-1n^2+40n-360=0
a = -1; b = 40; c = -360;
Δ = b2-4ac
Δ = 402-4·(-1)·(-360)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-4\sqrt{10}}{2*-1}=\frac{-40-4\sqrt{10}}{-2} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+4\sqrt{10}}{2*-1}=\frac{-40+4\sqrt{10}}{-2} $

See similar equations:

| 254262,4=2E+06x | | 8=11+3(t-2) | | 5x/3-(x-2)/4=9/4-1/2(x-(2x-1)/3) | | 7(p+2)=2(3p+1)-11 | | 2x+1+8x−17=180 | | 4a=-5a45 | | 240-x=2x | | 5x−27+4x−27=90 | | 5x+2(X=7)=14x-7 | | x*40+30=190 | | 4(t)+20=90 | | 1,2=1.025^x | | 0.5*0.5(2x+1)=0 | | 0,5*0,5(2x+1)=0 | | 2*2(x+1)=0 | | 2*2(x+1)=-1 | | 2+2(x+1)=-1 | | 2(x+1)=-1 | | V=1/3(3.14)(16h) | | 8x-12x=3x-27 | | 0.5*0.5(x+1)=-1 | | 0,5*0,5(x+1)+1=0 | | 8/100(200-x)+50=24/100(250) | | 8/100(200-x)+50=24/100*250 | | 0,25(0,5x+1)=-1 | | 0,5*0,5((0,5x+1)+1)+1=0 | | 4(x-3)=2(x-1)+x | | 5(x-2)=5x+1 | | 2x2-6+5=0 | | 2=3x^2-12x+7 | | 5(x-1)=10+6x | | 5x+x+(x/2)=397 |

Equations solver categories