((x-1)/2x)+((x+3)/4x)=5

Simple and best practice solution for ((x-1)/2x)+((x+3)/4x)=5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for ((x-1)/2x)+((x+3)/4x)=5 equation:


x in (-oo:+oo)

x*((x-1)/2)+x*((x+3)/4) = 5 // - 5

x*((x-1)/2)+x*((x+3)/4)-5 = 0

(x*(x-1))/2+(x*(x+3))/4-5 = 0

(4*x*(x-1))/(2*4)+(2*x*(x+3))/(2*4)+(-5*2*4)/(2*4) = 0

4*x*(x-1)+2*x*(x+3)-5*2*4 = 0

6*x^2+2*x-40 = 0

6*x^2+2*x-40 = 0

2*(3*x^2+x-20) = 0

3*x^2+x-20 = 0

DELTA = 1^2-(-20*3*4)

DELTA = 241

DELTA > 0

x = (241^(1/2)-1)/(2*3) or x = (-241^(1/2)-1)/(2*3)

x = (241^(1/2)-1)/6 or x = (-(241^(1/2)+1))/6

2*(x+(241^(1/2)+1)/6)*(x-((241^(1/2)-1)/6)) = 0

(2*(x+(241^(1/2)+1)/6)*(x-((241^(1/2)-1)/6)))/(2*4) = 0

(2*(x+(241^(1/2)+1)/6)*(x-((241^(1/2)-1)/6)))/(2*4) = 0 // * 2*4

2*(x+(241^(1/2)+1)/6)*(x-((241^(1/2)-1)/6)) = 0

( x+(241^(1/2)+1)/6 )

x+(241^(1/2)+1)/6 = 0 // - (241^(1/2)+1)/6

x = -((241^(1/2)+1)/6)

( x-((241^(1/2)-1)/6) )

x-((241^(1/2)-1)/6) = 0 // + (241^(1/2)-1)/6

x = (241^(1/2)-1)/6

x in { -((241^(1/2)+1)/6), (241^(1/2)-1)/6 }

See similar equations:

| 3.2x-9.62=3.5 | | ((x-1)/(x+2))-(1/x)=0 | | 2=p+11 | | ((x-1)/(2x-4))+((x-2)/(3x))=1 | | 72-6x=x^2 | | ((x-1)/(2x-4))+((x-2)/(3x))=0 | | ((X+b)/a)=1/a | | ((x+9)/18)=(1/9)+((x-4)/5) | | ((x+7)/(3))-((3x-7)/(4))=((x-1)/(2)) | | ((x+6)/(x-6))+1=(x+1)/(x-5) | | 6-6=10x+6x | | 0.14x+0.07(5000-x)=441 | | 12+r-2(r+1)=3 | | x=6+-2y | | x=6+-2y+x | | 40a^-1b^-7/20a^-5b^-9 | | 4/15=n/6 | | 6-(p^2/8)=-4 | | 211=157-v | | 5x-6y=6 | | 174+n=687 | | -2x+(1/x)=-2 | | 3x+b=3(2+x) | | -14.9=v/8-2.1 | | -4y+6=12-3y | | -1/5v-1/3=-3/2 | | 12y=-8x-32 | | P=c+4b+aforc | | 9+3x=2x-6 | | 1/6(12z-18)=2z-3 | | 281=188-u | | -4x-6y=16 |

Equations solver categories