((x-6)(x+6))/8+((x-8)(x+8))/6=14

Simple and best practice solution for ((x-6)(x+6))/8+((x-8)(x+8))/6=14 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for ((x-6)(x+6))/8+((x-8)(x+8))/6=14 equation:



((x-6)(x+6))/8+((x-8)(x+8))/6=14
We move all terms to the left:
((x-6)(x+6))/8+((x-8)(x+8))/6-(14)=0
We use the square of the difference formula
x^2+x^2-36-64-14=0
We add all the numbers together, and all the variables
2x^2-114=0
a = 2; b = 0; c = -114;
Δ = b2-4ac
Δ = 02-4·2·(-114)
Δ = 912
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{912}=\sqrt{16*57}=\sqrt{16}*\sqrt{57}=4\sqrt{57}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{57}}{2*2}=\frac{0-4\sqrt{57}}{4} =-\frac{4\sqrt{57}}{4} =-\sqrt{57} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{57}}{2*2}=\frac{0+4\sqrt{57}}{4} =\frac{4\sqrt{57}}{4} =\sqrt{57} $

See similar equations:

| m/4=3+7 | | X^2-8x-8=4 | | (2x-3)/5=3-x | | X+9/x+3=-4 | | 2x-3/5=3-x | | (x-3)^2-4=0 | | 38x-13=35x+83 | | 5/2x=2/(x-6) | | Yx13=143 | | 5/2x=2/x-6 | | 13+m=6/4 | | c7.6=4 | | 16x+8=8x-48 | | 4(x-7)=0.3(x+2)+2.1 | | 15x-7=8x-49 | | 1/5(5t-7)=t+7/10 | | 5x+(3x-2)=18 | | 1/(5t-7)=t+7/10 | | ((x-54.12)/x)=18 | | (x-54.12)/x=18 | | x-54.12=18 | | x+2+2x=4-3x-8 | | X-8=-(8-x) | | 6(x+2)-10=14 | | 3(-2+5x)=24 | | 5x=-10/7 | | 17-2r=-6(3r+9) | | 2x+10x-10=3x+9(x+1) | | a-13a=19a+6-7a | | 16=-4s+2s | | -8x+(x+2)^2=0 | | 1/4(10)^2t=5 |

Equations solver categories