(-1/2)x+4=-16

Simple and best practice solution for (-1/2)x+4=-16 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (-1/2)x+4=-16 equation:



(-1/2)x+4=-16
We move all terms to the left:
(-1/2)x+4-(-16)=0
Domain of the equation: 2)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(-1/2)x+20=0
We multiply parentheses
-1x^2+20=0
a = -1; b = 0; c = +20;
Δ = b2-4ac
Δ = 02-4·(-1)·20
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{5}}{2*-1}=\frac{0-4\sqrt{5}}{-2} =-\frac{4\sqrt{5}}{-2} =-\frac{2\sqrt{5}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{5}}{2*-1}=\frac{0+4\sqrt{5}}{-2} =\frac{4\sqrt{5}}{-2} =\frac{2\sqrt{5}}{-1} $

See similar equations:

| 8(v+1)=5v+23 | | (3x+10)+(80)=180 | | -1/2x+4=-16 | | 8x6+63x3-8)=0 | | 5x–10=2x-4 | | t+23=3t-31 | | 3x+6=3(2+×) | | 5a-52=a | | 3y-18=4y-28 | | 5x+10=3x+25 | | 3x-82=2x-45 | | 29-x/3=13 | | x^2+14x+17=4 | | 15x+5-1+27x=180 | | 6(x+9)=3(x+2) | | 12x=234 | | (x)+39=184 | | 10+2n+2=22 | | -2.5+a=-6.4 | | -15x+50=90 | | (6x-10)=(2x+6) | | 7(m+4)=8(m+3) | | (6x-10)=2(x+6) | | -15x-4=-1 | | 5(x-8)+15=-15 | | (3x)+(2x+18)=180 | | (2x)+(x)=180 | | 9=-b | | 25r+45=4 | | 3x-12=3x-2 | | 2a+1=32 | | 12k-4=k+18 |

Equations solver categories