If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(-1/3)(9x+42)-5x=-70
We move all terms to the left:
(-1/3)(9x+42)-5x-(-70)=0
Domain of the equation: 3)(9x+42)!=0We add all the numbers together, and all the variables
x∈R
-5x+(-1/3)(9x+42)+70=0
We multiply parentheses ..
(-9x^2-1/3*42)-5x+70=0
We multiply all the terms by the denominator
(-9x^2-1-5x*3*42)+70*3*42)=0
We add all the numbers together, and all the variables
(-9x^2-1-5x*3*42)=0
We get rid of parentheses
-9x^2-5x*3*42-1=0
Wy multiply elements
-9x^2-630x*4-1=0
Wy multiply elements
-9x^2-2520x-1=0
a = -9; b = -2520; c = -1;
Δ = b2-4ac
Δ = -25202-4·(-9)·(-1)
Δ = 6350364
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6350364}=\sqrt{36*176399}=\sqrt{36}*\sqrt{176399}=6\sqrt{176399}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2520)-6\sqrt{176399}}{2*-9}=\frac{2520-6\sqrt{176399}}{-18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2520)+6\sqrt{176399}}{2*-9}=\frac{2520+6\sqrt{176399}}{-18} $
| x+5/3=x-2/4 | | 4(b-6)=-4 | | -2/5k-5/9=-9/7k | | 7w=6+4w | | 2(b+10)=-4 | | -2/9k+9/8=-49/2k | | (5(x+5)/8)=3x+15 | | 7x-35=x+13 | | (5x+10)+(8x+15)=90 | | 0.0625+y=0.0104166667 | | x/2=7/13 | | 4x+6=-2(x+3)+12 | | 3y+4=27 | | 3(4x+12)=180 | | n−35=26 | | (7x+15)+(8x+15)=180 | | u−25=7 | | 2q=78 | | 3=y4 | | (3x+5)+(12x+25)=90 | | 4y²+16y+15=0 | | 1/4y-10=1/7y | | 2(−3x+4)=5x+2 | | 38 = n12 | | 2x-6=2x=-6 | | 3x-4-x=2x-6 | | -8r=65 | | 4x+(3x+7)=180 | | a²+8a=-15 | | 124x=180 | | x+x*x=72 | | -15t^2-23t+28=0 |