(-1/5)n+7=2

Simple and best practice solution for (-1/5)n+7=2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (-1/5)n+7=2 equation:



(-1/5)n+7=2
We move all terms to the left:
(-1/5)n+7-(2)=0
Domain of the equation: 5)n!=0
n!=0/1
n!=0
n∈R
We add all the numbers together, and all the variables
(-1/5)n+5=0
We multiply parentheses
-1n^2+5=0
a = -1; b = 0; c = +5;
Δ = b2-4ac
Δ = 02-4·(-1)·5
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{5}}{2*-1}=\frac{0-2\sqrt{5}}{-2} =-\frac{2\sqrt{5}}{-2} =-\frac{\sqrt{5}}{-1} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{5}}{2*-1}=\frac{0+2\sqrt{5}}{-2} =\frac{2\sqrt{5}}{-2} =\frac{\sqrt{5}}{-1} $

See similar equations:

| -4x+7+5x=15 | | 2(v+6)=-4v+18 | | 2x^2-2x+33=0 | | 6b+7=-14 | | 10y=3y+56 | | 12x-10=40+2x | | -30=10+n | | {2}{3}x+6=-12 | | 3(x-2)+10=-480 | | 5+5x+2=-2 | | 2m+6=2(5+m) | | -20=-4x-6x-20 | | 18=-8w+6(w+4) | | -3.3p-8.27=-1.3p+14.13 | | 5x-55=17 | | -5b+7=-38 | | -41=-4b-9 | | 10/20x-15/20=12/20x | | -2|3x+7|-9=-13 | | p-39=76 | | 2v+8–5v=-28 | | -(-5-6w)=4(w+3) | | -28=-8u+4(u-2) | | -2|3x+7|=9 | | 5x-2(2-1)=6 | | -8=-15/6(2)+b | | 18w+5=20w-17 | | 3(x-0)+9=-20 | | 85=-6y+7+4y | | -7x+1=5-7x | | 2w+20=120 | | 3x-10=x+40* |

Equations solver categories