(-1/x)+(2/6x)=2

Simple and best practice solution for (-1/x)+(2/6x)=2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (-1/x)+(2/6x)=2 equation:



(-1/x)+(2/6x)=2
We move all terms to the left:
(-1/x)+(2/6x)-(2)=0
Domain of the equation: x)!=0
x!=0/1
x!=0
x∈R
Domain of the equation: 6x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(-1/x)+(+2/6x)-2=0
We get rid of parentheses
-1/x+2/6x-2=0
We calculate fractions
(-6x)/6x^2+2x/6x^2-2=0
We multiply all the terms by the denominator
(-6x)+2x-2*6x^2=0
We add all the numbers together, and all the variables
2x+(-6x)-2*6x^2=0
Wy multiply elements
-12x^2+2x+(-6x)=0
We get rid of parentheses
-12x^2+2x-6x=0
We add all the numbers together, and all the variables
-12x^2-4x=0
a = -12; b = -4; c = 0;
Δ = b2-4ac
Δ = -42-4·(-12)·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16}=4$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4}{2*-12}=\frac{0}{-24} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4}{2*-12}=\frac{8}{-24} =-1/3 $

See similar equations:

| 7^x+9=9x | | 7+-6k=7 | | -4d-16-20=12+2d | | 7=-6k+7 | | 47/100=4/10+r/100 | | 2t+3t=40 | | -5+6x=2(3x-4) | | −2(b−3)−4=18 | | 2d+3(d=8) | | 16x^2+5X-74=0 | | -4d−16−20=12+2d | | x+.4x=330 | | 3t+5+2t-4t=3+6 | | 2+5x+x=20 | | 6+4x+7x=3x(6x-12)-4(x-6) | | 2d+3(d=8 | | 7+3x-−12x=3x+1 | | 0.95x+0.05(2-x)=0.10(-17) | | 4x+5x-8=28 | | 6z+19=-8-11z+2z | | -7f+10f+4=8f+9 | | 88-3y=20 | | 2x/5-x=x/10-35/5 | | X=2L+2y | | 9x+18/11=-18 | | 24a-22=-4(1-6a)1/1 | | x2=49/841 | | (5x)+(x)=180 | | -5x-2=5x-18 | | 10-4a=2(-a+8) | | 4x^2-25x+30.94=0 | | 4n+28=6n |

Equations solver categories