(-15x-30/9x+84)=-1

Simple and best practice solution for (-15x-30/9x+84)=-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (-15x-30/9x+84)=-1 equation:



(-15x-30/9x+84)=-1
We move all terms to the left:
(-15x-30/9x+84)-(-1)=0
Domain of the equation: 9x+84)!=0
x∈R
We add all the numbers together, and all the variables
(-15x-30/9x+84)+1=0
We get rid of parentheses
-15x-30/9x+84+1=0
We multiply all the terms by the denominator
-15x*9x+84*9x+1*9x-30=0
Wy multiply elements
-135x^2+756x+9x-30=0
We add all the numbers together, and all the variables
-135x^2+765x-30=0
a = -135; b = 765; c = -30;
Δ = b2-4ac
Δ = 7652-4·(-135)·(-30)
Δ = 569025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{569025}=\sqrt{2025*281}=\sqrt{2025}*\sqrt{281}=45\sqrt{281}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(765)-45\sqrt{281}}{2*-135}=\frac{-765-45\sqrt{281}}{-270} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(765)+45\sqrt{281}}{2*-135}=\frac{-765+45\sqrt{281}}{-270} $

See similar equations:

| 46/v=2 | | -c^2=16-8c | | (2x+1)^2+4=40 | | 2w+37=-3(w-9) | | 3v+33=-3(v+7) | | 2x+6x-89=35 | | 8.1x=2.2=38.3 | | ⅓(x-6)=⅔ | | (1/3)x-6=2/3 | | -101=-5(8x-5)-6 | | -7(-4-3m)=112 | | 21–13=7+x | | y/3=-42 | | 7(3-3x)=84 | | 58=-v/9 | | 82-5x=2 | | X=W/a | | -106=4(-1-5p)+3p | | 58=v/9 | | x+3x+9=49;x | | 4x+11-7×=19-15x+12x-8 | | −3(y+4)=12 | | 3(x−0.2)=1.8+x | | H=-14t^2+56t+60 | | 4x+11-7x=19-15x+12×-8 | | (5x-7)+(14x+1)+89=180 | | 23x-8-15x+3=23x-3-15x+17 | | 7x+5+3x=85;x= | | 6-9x=57 | | 3(2n+4)=3n-21 | | -½z=4 | | 2x(2x+24)=160 |

Equations solver categories