(-16)(t-1.5)(t+1)=14

Simple and best practice solution for (-16)(t-1.5)(t+1)=14 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (-16)(t-1.5)(t+1)=14 equation:



(-16)(t-1.5)(t+1)=14
We move all terms to the left:
(-16)(t-1.5)(t+1)-(14)=0
We multiply parentheses ..
(-16t+24)(t+1)-14=0
We multiply parentheses ..
(-16t^2-16t+24t+24)-14=0
We get rid of parentheses
-16t^2-16t+24t+24-14=0
We add all the numbers together, and all the variables
-16t^2+8t+10=0
a = -16; b = 8; c = +10;
Δ = b2-4ac
Δ = 82-4·(-16)·10
Δ = 704
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{704}=\sqrt{64*11}=\sqrt{64}*\sqrt{11}=8\sqrt{11}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8\sqrt{11}}{2*-16}=\frac{-8-8\sqrt{11}}{-32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8\sqrt{11}}{2*-16}=\frac{-8+8\sqrt{11}}{-32} $

See similar equations:

| 1x+12=4x+8 | | .2xX=25 | | 2y-3=5y+24 | | 43a=7-2(2a+5) | | 2x-72°.8x+12°=360 | | 2x-72°.8x+12°=90 | | 8n=56+16 | | 6x=-70 | | 2x+4-4=2x | | 8x-8=9x+12 | | 5+3y=3(2=y) | | f(-1)=4(-1)+11 | | 14-3(5t-12)=1-(20t+10 | | 20x+40=25x | | 5x+2x-35+3x+15=180 | | 24×k=6 | | 8x+10+2x-30=180 | | 3x+32=x+1,4 | | 1/2(2x-6)+3x=21 | | 2x^2+90=28x | | 0.8x+8=12 | | x+30+x-60=90 | | 7(7c+10)-4c=13(3c-2) | | 7(7c+10-4c=13(3c-2) | | 4(x+12)=6x+10 | | -4x-5=6-11× | | 50=10÷8p | | 34-3x=7(2x) | | 1/5x=6/7 | | 6x-11=117.5 | | 7=4.7I-8.25-7.2u | | 32=8x4 |

Equations solver categories