(-17/31)x+7/41=(15/31)

Simple and best practice solution for (-17/31)x+7/41=(15/31) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (-17/31)x+7/41=(15/31) equation:



(-17/31)x+7/41=(15/31)
We move all terms to the left:
(-17/31)x+7/41-((15/31))=0
Domain of the equation: 31)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(-17/31)x+7/41-((+15/31))=0
We multiply parentheses
-17x^2+7/41-((+15/31))=0
We calculate fractions
-17x^2+()/()+()/()=0
We add all the numbers together, and all the variables
-17x^2+2=0
a = -17; b = 0; c = +2;
Δ = b2-4ac
Δ = 02-4·(-17)·2
Δ = 136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{136}=\sqrt{4*34}=\sqrt{4}*\sqrt{34}=2\sqrt{34}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{34}}{2*-17}=\frac{0-2\sqrt{34}}{-34} =-\frac{2\sqrt{34}}{-34} =-\frac{\sqrt{34}}{-17} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{34}}{2*-17}=\frac{0+2\sqrt{34}}{-34} =\frac{2\sqrt{34}}{-34} =\frac{\sqrt{34}}{-17} $

See similar equations:

| 4/5+1/6x=1 | | -20.7=x/6-1.5 | | x²-9x+18=0 | | 2(4x+1=-12+6 | | 25*(-5)(2)= | | Z=-4-4x | | 1010-n=101 | | -7=x-7+1 | | 3n/2=-8 | | -2(t-5)+5t=9t-8 | | 9/4b+3/8b-1=b | | 8x+x=-9 | | 15-3n=15+0.5n | | 6x(30+8)=(6x3 | | 6{x-5}=5{x+5} | | 0.1=0.9^x | | 15-5x=10x+45 | | ∣y+3∣=17 | | 4(2x-5)=6x+8 | | h2=121 | | (15x-18)/2+22=40 | | -3x+5=6x-4 | | 2(x-8)+x=3x-18+2 | | 23=3x-8+7 | | 2.4(4x-3)=-11.52 | | 2(x+5)+2x=4=14x | | -18z=-9 | | 3+2x+5=11x+2 | | f=9/5(20+32) | | 8r-32=1/7(49r+70) | | 6x(30+8)=6x | | 2(3-2x)=(-4) |

Equations solver categories