If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (-2 + 6i)(2 + i) = 0 Multiply (-2 + 6i) * (2 + i) (-2(2 + i) + 6i * (2 + i)) = 0 ((2 * -2 + i * -2) + 6i * (2 + i)) = 0 ((-4 + -2i) + 6i * (2 + i)) = 0 (-4 + -2i + (2 * 6i + i * 6i)) = 0 (-4 + -2i + (12i + 6i2)) = 0 Combine like terms: -2i + 12i = 10i (-4 + 10i + 6i2) = 0 Solving -4 + 10i + 6i2 = 0 Solving for variable 'i'. Factor out the Greatest Common Factor (GCF), '2'. 2(-2 + 5i + 3i2) = 0 Factor a trinomial. 2((-2 + -1i)(1 + -3i)) = 0 Ignore the factor 2.Subproblem 1
Set the factor '(-2 + -1i)' equal to zero and attempt to solve: Simplifying -2 + -1i = 0 Solving -2 + -1i = 0 Move all terms containing i to the left, all other terms to the right. Add '2' to each side of the equation. -2 + 2 + -1i = 0 + 2 Combine like terms: -2 + 2 = 0 0 + -1i = 0 + 2 -1i = 0 + 2 Combine like terms: 0 + 2 = 2 -1i = 2 Divide each side by '-1'. i = -2 Simplifying i = -2Subproblem 2
Set the factor '(1 + -3i)' equal to zero and attempt to solve: Simplifying 1 + -3i = 0 Solving 1 + -3i = 0 Move all terms containing i to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + -3i = 0 + -1 Combine like terms: 1 + -1 = 0 0 + -3i = 0 + -1 -3i = 0 + -1 Combine like terms: 0 + -1 = -1 -3i = -1 Divide each side by '-3'. i = 0.3333333333 Simplifying i = 0.3333333333Solution
i = {-2, 0.3333333333}
| 90x-15=15(6x)+1 | | f(x+1)=x^2-5x | | 1.8y-9.3y-6.3y= | | 8h+12h-15h=25+30+15 | | 3a+(25-a)=225 | | 90x-15=15(6x)+15 | | 2708.8152=2*r^2*3.14+6.28*r*38.3 | | (x-3)^2=36 | | 6+3a=6a+5-3a+1 | | x^3-7x^2-6x-36=0 | | 90x-15=15(6x)-1 | | 15v+13v-2b= | | m+5+m=23 | | 18.75=1000x(15/12) | | 3i-(13-5i)=0 | | 5u-15-7=24u-4-4u | | Sqrt(y+12)=3 | | 2c+4b=56 | | H=-16t^2+123(5) | | x+35=190 | | (8+3)+4=G+(3+4) | | 5(x-7)=190 | | 123(5)=16t^2+123t | | -119=-7(5a-3) | | 144=80+10x | | 9.9=x(.06)(3/12) | | 100x+10x+81=0 | | 6(5x+9)=114 | | 8-(4y+1)=6[(7y-1)-(y-3)] | | 123=-16t^2+123t | | 0=3x^2+3x-18 | | 2(6y+5)-y= |