(-2-4i)(8+5i)+4i(-6-7i)=0

Simple and best practice solution for (-2-4i)(8+5i)+4i(-6-7i)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (-2-4i)(8+5i)+4i(-6-7i)=0 equation:



(-2-4i)(8+5i)+4i(-6-7i)=0
We add all the numbers together, and all the variables
(-4i-2)(5i+8)+4i(-7i-6)=0
We multiply parentheses
-28i^2+(-4i-2)(5i+8)-24i=0
We multiply parentheses ..
-28i^2+(-20i^2-32i-10i-16)-24i=0
We get rid of parentheses
-28i^2-20i^2-32i-10i-24i-16=0
We add all the numbers together, and all the variables
-48i^2-66i-16=0
a = -48; b = -66; c = -16;
Δ = b2-4ac
Δ = -662-4·(-48)·(-16)
Δ = 1284
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$i_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$i_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1284}=\sqrt{4*321}=\sqrt{4}*\sqrt{321}=2\sqrt{321}$
$i_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-66)-2\sqrt{321}}{2*-48}=\frac{66-2\sqrt{321}}{-96} $
$i_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-66)+2\sqrt{321}}{2*-48}=\frac{66+2\sqrt{321}}{-96} $

See similar equations:

| 100+0.2x=0 | | K^2-8k-120=0 | | K^2-8k-136=0 | | -2i(-6+2i)+6(5-6i)=0 | | u÷4+1+u÷2=5u÷6 | | (-1-7i)(-8+6i)=0 | | (1+8i)(2+8i)=0 | | (1+8i)^2=0 | | (2+i)(2+4i)=0 | | 4y-2×=10 | | 2x+2(x+7)=14x–6 | | (-6+3i)(2+8i)=0 | | -i(-15+13i)=0 | | 10(j+5)=80 | | (u+50)/(7)=-4 | | (z)/(-10)+-83=-74 | | (p)/(3)+10=17 | | –33+5f=37 | | 5=(g)/(7)-2 | | 11i(9-6i)=0 | | (k)/(8)+37=47 | | 6h+29=95 | | 3=f+198 | | 19=(z)/(3)+17 | | (p)/(4)-1=3 | | -1/2m÷3=57 | | -6i(-4+6i)=0 | | Y=3x2-4x+7 | | (w)/(-7)+-33=-35 | | -5i-7-(5-6i)=0 | | -20=(w)/(-3)+-17 | | 3+7i-(2-6i)=0 |

Equations solver categories