(-2x+3)(x+6)+(-2x+3)(4x-1)=0

Simple and best practice solution for (-2x+3)(x+6)+(-2x+3)(4x-1)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (-2x+3)(x+6)+(-2x+3)(4x-1)=0 equation:



(-2x+3)(x+6)+(-2x+3)(4x-1)=0
We multiply parentheses ..
(-2x^2-12x+3x+18)+(-2x+3)(4x-1)=0
We get rid of parentheses
-2x^2-12x+3x+(-2x+3)(4x-1)+18=0
We multiply parentheses ..
-2x^2+(-8x^2+2x+12x-3)-12x+3x+18=0
We add all the numbers together, and all the variables
-2x^2+(-8x^2+2x+12x-3)-9x+18=0
We get rid of parentheses
-2x^2-8x^2+2x+12x-9x-3+18=0
We add all the numbers together, and all the variables
-10x^2+5x+15=0
a = -10; b = 5; c = +15;
Δ = b2-4ac
Δ = 52-4·(-10)·15
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{625}=25$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-25}{2*-10}=\frac{-30}{-20} =1+1/2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+25}{2*-10}=\frac{20}{-20} =-1 $

See similar equations:

| 2(4x−1)=−2+8x | | 5p+3=4p+10 | | h+5=96 | | -143=-7-8(-7-4x) | | 5=v/10 | | 6z+-4z=9 | | 20+-x=31 | | E-12d=288 | | 6.8-x=7.1=x | | -2(x+1)+1/5=6 | | 7r2-10=25 | | 2x+3x-7=5x-7 | | 5(4x+1)=105 | | w/5​​=3 | | x2+35x+82=0 | | (8x-24)/8=x | | (x-9)^2=27 | | -8(x+5)=-96 | | 10y=170 | | 8c^2-7c-18=0 | | 2x-6x=-x | | −16=−0.5k | | -5(2x-9)=2(3x+12 | | X-(.20×x)=70000 | | 7a^2=126+21a | | x3-35x+82=0 | | 14x=6=5x-3 | | 13=4.70+2x | | -5(2x-9)=2(3x+12= | | 160+44t-16t^2=0 | | X=8/15x+1/2 | | 8w−14=26 |

Equations solver categories