(-3)=2(4x2-5)-15

Simple and best practice solution for (-3)=2(4x2-5)-15 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (-3)=2(4x2-5)-15 equation:



(-3)=2(4x^2-5)-15
We move all terms to the left:
(-3)-(2(4x^2-5)-15)=0
We add all the numbers together, and all the variables
-(2(4x^2-5)-15)-3=0
We calculate terms in parentheses: -(2(4x^2-5)-15), so:
2(4x^2-5)-15
We multiply parentheses
8x^2-10-15
We add all the numbers together, and all the variables
8x^2-25
Back to the equation:
-(8x^2-25)
We get rid of parentheses
-8x^2+25-3=0
We add all the numbers together, and all the variables
-8x^2+22=0
a = -8; b = 0; c = +22;
Δ = b2-4ac
Δ = 02-4·(-8)·22
Δ = 704
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{704}=\sqrt{64*11}=\sqrt{64}*\sqrt{11}=8\sqrt{11}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{11}}{2*-8}=\frac{0-8\sqrt{11}}{-16} =-\frac{8\sqrt{11}}{-16} =-\frac{\sqrt{11}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{11}}{2*-8}=\frac{0+8\sqrt{11}}{-16} =\frac{8\sqrt{11}}{-16} =\frac{\sqrt{11}}{-2} $

See similar equations:

| -4+4n=0 | | 5(10^x)=22 | | 2x+x-9=x+7 | | 3|x-17|+7=7 | | -3x+2=−3x+2=2x+37 | | -3r-10=44 | | 2(y+2)-y=2(y-1)+9 | | 1.5+.6x=13.50 | | -233=-w+18 | | 5h-10=h+10 | | 20y+16=16y-16 | | (x+3)+(3x-4)=180 | | 7x+11=10x=-2+3 | | 9/x=63 | | 6x/5=27 | | 9x+1–7x–5=−20 | | 5(x-2)+1=1+2x-9+3x | | 18x+30=105 | | 6(x+2)=4x+26 | | 0.6k+0.8k=0.8+0.9 | | 11x-5(x+2)=(x=5) | | -8(x-1)=-6x+20 | | Y+2=3/4(x-5) | | -18+x=5 | | 223=-w+18 | | −3(x+8)=30 | | 3g+4​(−5+2​g)=1−g | | 5p-4=86 | | 7b+3-46=3-3(6+4) | | 3(x+24)=168-(4x) | | 6(x+4+1=x+5 | | 14(m-3)2=7 |

Equations solver categories