If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(-3)=2x^2+5(-3)-9
We move all terms to the left:
(-3)-(2x^2+5(-3)-9)=0
We add all the numbers together, and all the variables
-(2x^2+5(-3)-9)-3=0
We calculate terms in parentheses: -(2x^2+5(-3)-9), so:We get rid of parentheses
2x^2+5(-3)-9
determiningTheFunctionDomain 2x^2-9+5(-3)
We add all the numbers together, and all the variables
2x^2-24
Back to the equation:
-(2x^2-24)
-2x^2+24-3=0
We add all the numbers together, and all the variables
-2x^2+21=0
a = -2; b = 0; c = +21;
Δ = b2-4ac
Δ = 02-4·(-2)·21
Δ = 168
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{168}=\sqrt{4*42}=\sqrt{4}*\sqrt{42}=2\sqrt{42}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{42}}{2*-2}=\frac{0-2\sqrt{42}}{-4} =-\frac{2\sqrt{42}}{-4} =-\frac{\sqrt{42}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{42}}{2*-2}=\frac{0+2\sqrt{42}}{-4} =\frac{2\sqrt{42}}{-4} =\frac{\sqrt{42}}{-2} $
| –8w=7−7w | | 21=8x-9 | | -10+a=-10 | | 12.50+.40x=14.75 | | 2(6x-5)+4x+7=180 | | m=-(4m+3)+2m | | -61=8-0.33333333333(12w+42)-w | | 10x=5(3x+2) | | F(x)=3|x-7|+11 | | 5(2+4m)=-160 | | 1/2(8x-4)=32 | | 12b+1=180 | | 2(5x-7)=6 | | -7w+2(w-6)=-27 | | (5x-3)(4x-2)(10x-20)=180 | | -6+m=12 | | (2x+35)+(2x+137)=180 | | 14000+75y=24000-125y | | 5+(3x)=(5x)-19 | | 4+5(1-6n)=6n-39 | | -1/3x-12=36 | | 5x-5=8x+21 | | 14x-11+8x+7+5x+18+10x+13=360 | | 4x+30=-2x-18 | | –3(1.25–2.48x)=8.15x+5.86 | | 18x–12=18x–36 | | (15+x)(24+x)=540 | | -2(1-9k)=250 | | -2/3x-34x=5/6 | | -5=x+10/4 | | (2x-20)(x-20)(10)=8320 | | -6x+66=-66 |