If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(-3/8)(x-24)+x=19
We move all terms to the left:
(-3/8)(x-24)+x-(19)=0
Domain of the equation: 8)(x-24)!=0We add all the numbers together, and all the variables
x∈R
x+(-3/8)(x-24)-19=0
We multiply parentheses ..
(-3x^2-3/8*-24)+x-19=0
We multiply all the terms by the denominator
(-3x^2-3+x*8*-24)-19*8*-24)=0
We add all the numbers together, and all the variables
(-3x^2-3+x*8*-24)=0
We get rid of parentheses
-3x^2+x*8*-3-24=0
We add all the numbers together, and all the variables
-3x^2+x*8*-27=0
Wy multiply elements
-3x^2+8x^2-27=0
We add all the numbers together, and all the variables
5x^2-27=0
a = 5; b = 0; c = -27;
Δ = b2-4ac
Δ = 02-4·5·(-27)
Δ = 540
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{540}=\sqrt{36*15}=\sqrt{36}*\sqrt{15}=6\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{15}}{2*5}=\frac{0-6\sqrt{15}}{10} =-\frac{6\sqrt{15}}{10} =-\frac{3\sqrt{15}}{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{15}}{2*5}=\frac{0+6\sqrt{15}}{10} =\frac{6\sqrt{15}}{10} =\frac{3\sqrt{15}}{5} $
| 3(x+90=2x+19 | | 3^(x+2)=0.4^(x) | | 2/3/20=9.2/x | | 17-11y-6y=-82 | | 7(7+2i)=3(9i-1) | | 2x+2x+x+20=180 | | 7(3a+4=-35 | | -15(c-30)=25 | | 6(7-f)=21 | | 2(y=5)+9y+5=180 | | 2(y=5)+9y+5 | | 5x-21+2x+34=90 | | 2t+17=t+31 | | 10^(5-x)=0.0001 | | 3t=2t+17 | | 5x-21=90 | | 99÷(x−13)=11 | | 9-3x=1/4 | | 9x-3=1/4 | | 10-8b=10 | | 0.75-7x=2.80 | | 6b+7=-71 | | 5^(2x+3)=625 | | 8b+5=-27 | | -4-7m=108 | | 7/5r=14 | | (x+32)+(x+94)=150 | | 918.2+v=1,820.8 | | 6(x-3)/3=2(x+9)/13 | | 0.5x-0.7=0.3 | | 187(x-419)^(2)=0 | | 16/28=28/x |