If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (-3s + 2t)(4s + -1t) = 0 Multiply (-3s + 2t) * (4s + -1t) (-3s * (4s + -1t) + 2t * (4s + -1t)) = 0 ((4s * -3s + -1t * -3s) + 2t * (4s + -1t)) = 0 Reorder the terms: ((3st + -12s2) + 2t * (4s + -1t)) = 0 ((3st + -12s2) + 2t * (4s + -1t)) = 0 (3st + -12s2 + (4s * 2t + -1t * 2t)) = 0 (3st + -12s2 + (8st + -2t2)) = 0 Reorder the terms: (3st + 8st + -12s2 + -2t2) = 0 Combine like terms: 3st + 8st = 11st (11st + -12s2 + -2t2) = 0 Solving 11st + -12s2 + -2t2 = 0 Solving for variable 's'. Factor a trinomial. (-4s + t)(3s + -2t) = 0Subproblem 1
Set the factor '(-4s + t)' equal to zero and attempt to solve: Simplifying -4s + t = 0 Solving -4s + t = 0 Move all terms containing s to the left, all other terms to the right. Add '-1t' to each side of the equation. -4s + t + -1t = 0 + -1t Combine like terms: t + -1t = 0 -4s + 0 = 0 + -1t -4s = 0 + -1t Remove the zero: -4s = -1t Divide each side by '-4'. s = 0.25t Simplifying s = 0.25tSubproblem 2
Set the factor '(3s + -2t)' equal to zero and attempt to solve: Simplifying 3s + -2t = 0 Solving 3s + -2t = 0 Move all terms containing s to the left, all other terms to the right. Add '2t' to each side of the equation. 3s + -2t + 2t = 0 + 2t Combine like terms: -2t + 2t = 0 3s + 0 = 0 + 2t 3s = 0 + 2t Remove the zero: 3s = 2t Divide each side by '3'. s = 0.6666666667t Simplifying s = 0.6666666667tSolution
s = {0.25t, 0.6666666667t}
| 9sin(x+60)=4 | | 12-x=-75 | | 3/2x-5=6 | | 4y+7=-11 | | 1000=300(1+r)*5 | | 2+4u=6 | | 7=x/11.2 | | 2x-3(x-10)=45 | | y/3-4=14 | | 2z-3+z-2=5 | | y=(2x^2-8x-9)(11x-7) | | 4+5(ln)x=2 | | 4+5ln(x)=2 | | Y=-250x+1200 | | 1000=300(1+r) | | 5x+5-2x=35 | | 1000=300(1+r)5 | | 5x^2y+(2xy^2+x^2y)= | | 4*(25+x)=240 | | 6(2x+2)+2(3x-6)=10(x+15)+2(x+5) | | 12x+50=4x+250 | | 1/2x-163 | | p=1/2wu | | 6-8=2 | | 2sin^2x-sinx+4=0 | | 2(z+1)-4(2-4)=2(z+5) | | M=18-6+O+P | | 2(7x-9x)=10+8(2+x) | | 3(4x+5)=8(9x+4) | | 500=p(1-0.8) | | 5(2x-6)=10 | | 500=x(1-0.8) |