(-4/9)f=-3

Simple and best practice solution for (-4/9)f=-3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (-4/9)f=-3 equation:



(-4/9)f=-3
We move all terms to the left:
(-4/9)f-(-3)=0
Domain of the equation: 9)f!=0
f!=0/1
f!=0
f∈R
We add all the numbers together, and all the variables
(-4/9)f+3=0
We multiply parentheses
-4f^2+3=0
a = -4; b = 0; c = +3;
Δ = b2-4ac
Δ = 02-4·(-4)·3
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$
$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{3}}{2*-4}=\frac{0-4\sqrt{3}}{-8} =-\frac{4\sqrt{3}}{-8} =-\frac{\sqrt{3}}{-2} $
$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{3}}{2*-4}=\frac{0+4\sqrt{3}}{-8} =\frac{4\sqrt{3}}{-8} =\frac{\sqrt{3}}{-2} $

See similar equations:

| 10-2v=-50 | | 3+2p+9=22 | | k/−5-27=−16 | | 4x-2+2x+10+74=180 | | 4x-(-3)=2 | | 4x-2+2x+10=74 | | –c=15 | | 1/6x+2=1/2x-2 | | 5p−17=2(2p−7 | | 2x+20-5x-11=11x-63 | | -20=(p/15) | | 0.5x^2-6x+3=-7 | | 3x+22=5x+26 | | 8a÷15=17 | | h−13=–3 | | a+a÷2=75 | | 2x+20+5x-11+11x-63=180 | | x=180(11x+33) | | 180=8x-35+6x-5+3x-1 | | 4x+8=20-2x | | 10x+30+3x-6=180 | | m²+8m=48 | | 44+60+60+x=180 | | (6x-7)+103+2x=180 | | 123+x+90=180 | | 10x–3x+5=26 | | 6x-10+65+x=180 | | V=(16-2x)(20-2x)x | | 6x-10+65=x^2 | | -5y+11=-2(y+2) | | 5d=2d-18;d=-6 | | 2(u-8)=-2u-40 |

Equations solver categories