(-4x+1)(-2x+2)=8x*2

Simple and best practice solution for (-4x+1)(-2x+2)=8x*2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (-4x+1)(-2x+2)=8x*2 equation:



(-4x+1)(-2x+2)=8x*2
We move all terms to the left:
(-4x+1)(-2x+2)-(8x*2)=0
We add all the numbers together, and all the variables
(-4x+1)(-2x+2)-(+8x*2)=0
We get rid of parentheses
(-4x+1)(-2x+2)-8x*2=0
We multiply parentheses ..
(+8x^2-8x-2x+2)-8x*2=0
Wy multiply elements
(+8x^2-8x-2x+2)-16x=0
We get rid of parentheses
8x^2-8x-2x-16x+2=0
We add all the numbers together, and all the variables
8x^2-26x+2=0
a = 8; b = -26; c = +2;
Δ = b2-4ac
Δ = -262-4·8·2
Δ = 612
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{612}=\sqrt{36*17}=\sqrt{36}*\sqrt{17}=6\sqrt{17}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-26)-6\sqrt{17}}{2*8}=\frac{26-6\sqrt{17}}{16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-26)+6\sqrt{17}}{2*8}=\frac{26+6\sqrt{17}}{16} $

See similar equations:

| (5a+4)5(2a+2)=3 | | 2x+30+6x+10+x-10=180 | | (5a+4)5=(2a+2)3 | | 2.9(1.8r-5)=52.4 | | 9a+7=14+2a | | x^2+4/3x+4/9=0 | | 3/5x+x=40 | | 3t^2=7t+6 | | 3t2=7t+6 | | 2x+3+x+4=27 | | -4(2y-6)-y=-3(y-4) | | -4.8-4y-5.3-y=-4y-7.4 | | 37x+1=6(6x+2) | | -8.8-5z-4.5-3z=7z+11.9 | | (5x-2)/4=2x-8 | | 10(z+4)-4(z-1)=2(z-1)+3(z-2) | | Y-3=2/3(x+3) | | Y-3=-2/3(x+3)-3 | | -3.8x=52.44 | | 6(4x-9)-6=(x-3)+84 | | (-6p-8)-(2p=6) | | 2(x-3)+2(x-6)=10 | | 4(5x-4)+3(12-5x)-2(2x+4)=-1 | | 11w+16w-7+1=-5w+1-7 | | -4(3t-5)+7t=4t-5 | | 4.8q-5.3-5.9q=-0.1q-5.3 | | 8.5x-5=7.5x-5 | | 70x=-5 | | |9-4x|-9=8 | | 16*2y=16 | | 73-17=46+c | | 120=6(x-60)+75 |

Equations solver categories