(-4x-5)(-4x+5)=(4x-3)2

Simple and best practice solution for (-4x-5)(-4x+5)=(4x-3)2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (-4x-5)(-4x+5)=(4x-3)2 equation:



(-4x-5)(-4x+5)=(4x-3)2
We move all terms to the left:
(-4x-5)(-4x+5)-((4x-3)2)=0
We multiply parentheses ..
(+16x^2-20x+20x-25)-((4x-3)2)=0
We calculate terms in parentheses: -((4x-3)2), so:
(4x-3)2
We multiply parentheses
8x-6
Back to the equation:
-(8x-6)
We get rid of parentheses
16x^2-20x+20x-8x-25+6=0
We add all the numbers together, and all the variables
16x^2-8x-19=0
a = 16; b = -8; c = -19;
Δ = b2-4ac
Δ = -82-4·16·(-19)
Δ = 1280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1280}=\sqrt{256*5}=\sqrt{256}*\sqrt{5}=16\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-16\sqrt{5}}{2*16}=\frac{8-16\sqrt{5}}{32} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+16\sqrt{5}}{2*16}=\frac{8+16\sqrt{5}}{32} $

See similar equations:

| 6y-8=10y+12 | | 2(x-2)2+(x-4)(x+4)+11x=3x(x-1)-7 | | 3x=3(-5+x)+15 | | x3-13x=107 | | 3(x-2)=3x+7 | | x/3+x/4+200=x | | y-0.8y=120 | | 4x=-5x-90 | | r+45=-55 | | 3x÷5-24x-5=2x+7 | | 13n-12n=18 | | 3x-25=120 | | 24a−3(2a−5)=51​ | | 3x÷5-2÷9=6x÷5+4÷9 | | 2^x=7,46 | | 60=9x-21 | | 3.6y+5.4=19.8 | | (x+5)(x+5)=-49 | | 5.4=2.5k-4.6 | | 2(3x+4)=4(7x+3) | | 21.4+3m=-5.6 | | (3a+2)=(3a+5) | | 4x=(-5x-90) | | 1.3=2.54+0.8m | | 3.5m-7=-35 | | x²-4x+x(x-1)=3x²-8x+2 | | X(x+10)+(1+30)+2x=360 | | 4x-32=8x-16 | | X(x+10)+(1+30)+2x=260 | | a-52=90 | | 15x^2+3x=228x | | (10-y)*9=y*1.7 |

Equations solver categories