(-5/3)-(1/2)x=(-7/5)

Simple and best practice solution for (-5/3)-(1/2)x=(-7/5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (-5/3)-(1/2)x=(-7/5) equation:



(-5/3)-(1/2)x=(-7/5)
We move all terms to the left:
(-5/3)-(1/2)x-((-7/5))=0
Domain of the equation: 2)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
-(+1/2)x+(-5/3)-((-7/5))=0
We multiply parentheses
-x^2+(-5/3)-((-7/5))=0
We get rid of parentheses
-x^2-5/3-((-7/5))=0
We calculate fractions
-x^2+()/()+()/()=0
We add all the numbers together, and all the variables
-1x^2+2=0
a = -1; b = 0; c = +2;
Δ = b2-4ac
Δ = 02-4·(-1)·2
Δ = 8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8}=\sqrt{4*2}=\sqrt{4}*\sqrt{2}=2\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{2}}{2*-1}=\frac{0-2\sqrt{2}}{-2} =-\frac{2\sqrt{2}}{-2} =-\frac{\sqrt{2}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{2}}{2*-1}=\frac{0+2\sqrt{2}}{-2} =\frac{2\sqrt{2}}{-2} =\frac{\sqrt{2}}{-1} $

See similar equations:

| 9=w/2-3 | | 5u-5=5 | | 2008*3.14*24662856765476=x/270*325 | | 2-15x-5=12 | | 2450=x^2-x | | (3x+14)+(2x-9)=180 | | 0,40x+2=3x-1 | | 3x+1=7x+6 | | 8x-5x=x-7+10 | | 45+6d=360 | | 6x+13(50-x)=433 | | (x)/(6)+4=20 | | 8x-9=96 | | 5/2x-8=92 | | 5(3m-7)-2(8+7m)=13-3(6-5m) | | 1/3(2x+7)=1/2(x+3) | | 4x-(x-1)=0 | | 2x-90=6 | | -4(2,5y+3)+10y=6 | | 1/3(3t+12)-2t=-(t+8) | | 23-5(5x-3)=-2 | | 3x-5+4x+x=180 | | 13-6(5x-6)=-5 | | 4(5x+5)+2(3x-2)=54 | | 6(x+3)=-6 | | 9−6x=11−(7x+6) | | 4.9y=24.5 | | 18-a=-5a | | 2x/5+1=-3 | | 7x-6=4x-2 | | 3x+4x-5=7 | | 3x-10-2x^2=0 |

Equations solver categories