If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(-5/8)x+(1/4)=(1/8)
We move all terms to the left:
(-5/8)x+(1/4)-((1/8))=0
Domain of the equation: 8)x!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
(-5/8)x+(+1/4)-((+1/8))=0
We multiply parentheses
-5x^2+(+1/4)-((+1/8))=0
We get rid of parentheses
-5x^2+1/4-((+1/8))=0
We calculate fractions
-5x^2+()/()+()/()=0
We add all the numbers together, and all the variables
-5x^2+2=0
a = -5; b = 0; c = +2;
Δ = b2-4ac
Δ = 02-4·(-5)·2
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{10}}{2*-5}=\frac{0-2\sqrt{10}}{-10} =-\frac{2\sqrt{10}}{-10} =-\frac{\sqrt{10}}{-5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{10}}{2*-5}=\frac{0+2\sqrt{10}}{-10} =\frac{2\sqrt{10}}{-10} =\frac{\sqrt{10}}{-5} $
| x(2)-110x+2100=0 | | -3+5(2n+6)=32 | | (8+4y)-4y=8 | | 225((—•x)+—)-—=0342 | | 2/3x3/5x=4 | | 4/6d=-1/6 | | 4d=88-4d | | 2(x+3)-8x+12=4(5-x)+3-2x | | x+26+15=58 | | –11v−16=16−9v | | 7x^+64x+64=0 | | -4x-9=-5x-15 | | 7x^2+6x+64=0 | | 10w=w+90 | | 3x+7=22x=7 | | –19k+9=–18k | | 4-2(n-8)=15 | | 2/3x-3/5x=5 | | 2-6t=10t+66 | | 4=w/7+1 | | 12/3x=4/5 | | x/8=11x | | 2/3x3/5x=5 | | 1/2x=6=26 | | -3(1-4n)=2n+3(-6n-1) | | 9.80=0.6x | | -56+9u=-5u | | y+y+(11/8y)+(11/8y)=190 | | 8-3u=17 | | 5÷4=w+2÷6 | | 7(p-3)-10p=-3 | | 1/x=6=26 |