(-9/4)v+(4/5)=(7/8)

Simple and best practice solution for (-9/4)v+(4/5)=(7/8) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (-9/4)v+(4/5)=(7/8) equation:



(-9/4)v+(4/5)=(7/8)
We move all terms to the left:
(-9/4)v+(4/5)-((7/8))=0
Domain of the equation: 4)v!=0
v!=0/1
v!=0
v∈R
We add all the numbers together, and all the variables
(-9/4)v+(+4/5)-((+7/8))=0
We multiply parentheses
-9v^2+(+4/5)-((+7/8))=0
We get rid of parentheses
-9v^2+4/5-((+7/8))=0
We calculate fractions
-9v^2+()/()+()/()=0
We add all the numbers together, and all the variables
-9v^2+2=0
a = -9; b = 0; c = +2;
Δ = b2-4ac
Δ = 02-4·(-9)·2
Δ = 72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{72}=\sqrt{36*2}=\sqrt{36}*\sqrt{2}=6\sqrt{2}$
$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{2}}{2*-9}=\frac{0-6\sqrt{2}}{-18} =-\frac{6\sqrt{2}}{-18} =-\frac{\sqrt{2}}{-3} $
$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{2}}{2*-9}=\frac{0+6\sqrt{2}}{-18} =\frac{6\sqrt{2}}{-18} =\frac{\sqrt{2}}{-3} $

See similar equations:

| (-25/35)*x=1 | | v/7=-11 | | 2x+x-4=16 | | (7n+9)(4n-3)=0 | | 19+7y=-19-10+4y | | -25/35*x=1 | | 6-x-x=-4 | | -5(10m+12)=8(m+7) | | 5x(x+6)=10 | | -11z=z+12 | | 7y-21=2y+24 | | -54=6f | | -6(x+3)-6(-3x-6)=11(x-1)+1 | | 3y(4y-12)=0 | | (3q-1)(q+1)=0 | | 2/3(x-1/4)+x=5/3x-1/6 | | -17v+14=-10-9v | | 1.9/y=5.7/1.2 | | 198=-4x+2{-6x+3} | | 1-3x+5=4x-3 | | 1/2x-5+2/3x=7/6x=4 | | -12p+20=-13p | | 2(5c+2=2c=3(2c+3)+7 | | f(f+6)=0 | | (2t-t^2)/(4-t)=t | | 0.003x0.03=0.0009 | | 3x^2+15x+56=0 | | m−55=20 | | -15=5m+12-2m+6 | | O=3-m | | 5x-40=5x+20 | | -11r+15=-10r-9+3r |

Equations solver categories