(-i+1)(3-2i)(1+3i)=0

Simple and best practice solution for (-i+1)(3-2i)(1+3i)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (-i+1)(3-2i)(1+3i)=0 equation:


Simplifying
(-1i + 1)(3 + -2i)(1 + 3i) = 0

Reorder the terms:
(1 + -1i)(3 + -2i)(1 + 3i) = 0

Multiply (1 + -1i) * (3 + -2i)
(1(3 + -2i) + -1i * (3 + -2i))(1 + 3i) = 0
((3 * 1 + -2i * 1) + -1i * (3 + -2i))(1 + 3i) = 0
((3 + -2i) + -1i * (3 + -2i))(1 + 3i) = 0
(3 + -2i + (3 * -1i + -2i * -1i))(1 + 3i) = 0
(3 + -2i + (-3i + 2i2))(1 + 3i) = 0

Combine like terms: -2i + -3i = -5i
(3 + -5i + 2i2)(1 + 3i) = 0

Multiply (3 + -5i + 2i2) * (1 + 3i)
(3(1 + 3i) + -5i * (1 + 3i) + 2i2 * (1 + 3i)) = 0
((1 * 3 + 3i * 3) + -5i * (1 + 3i) + 2i2 * (1 + 3i)) = 0
((3 + 9i) + -5i * (1 + 3i) + 2i2 * (1 + 3i)) = 0
(3 + 9i + (1 * -5i + 3i * -5i) + 2i2 * (1 + 3i)) = 0
(3 + 9i + (-5i + -15i2) + 2i2 * (1 + 3i)) = 0
(3 + 9i + -5i + -15i2 + (1 * 2i2 + 3i * 2i2)) = 0
(3 + 9i + -5i + -15i2 + (2i2 + 6i3)) = 0

Combine like terms: 9i + -5i = 4i
(3 + 4i + -15i2 + 2i2 + 6i3) = 0

Combine like terms: -15i2 + 2i2 = -13i2
(3 + 4i + -13i2 + 6i3) = 0

Solving
3 + 4i + -13i2 + 6i3 = 0

Solving for variable 'i'.

The solution to this equation could not be determined.

See similar equations:

| 5x^2+2y^2+4xy-2x+4y+5=0 | | -19(8a+3b)= | | 3(3w+4)-12w= | | B^2-4bg-60g^2=0 | | 3(x+15)=9(2+x) | | -2(u+1)-6= | | (2+3i)(5-6i)=0 | | 4(4y-2)+2(2y+2)= | | (3/4)X(3/4)X(3/4)X(3/4)X(3/4) | | [6v-15]=[4v+7] | | F(x)=x^3-13x^2-30x | | -3(x+6)+x= | | =9m | | Y-28=-4y+3 | | 2(1.5x-5)x=2 | | 8a=63 | | 2(1.5-5)+x=2 | | 0.75-0.50n=0.625 | | 7[9-(-9x-4)]=504x+287 | | -48/-4 | | [2v-5]=7 | | 5x^2-8x+1=9 | | 6(x+2)=12(x+3) | | 2(3x-6)=3(-2x-4) | | 3+log[5](2x)=4 | | -3(-3x-6+9m)= | | 5x^2-14=45 | | 6=x/-2 | | 64c+72d= | | 5(x-2)-7= | | 0.40-1.20=0.15+0.80 | | 7x^4*4x^3= |

Equations solver categories