If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(-x+2)(5-25)=-2x(x-4)+7
We move all terms to the left:
(-x+2)(5-25)-(-2x(x-4)+7)=0
We add all the numbers together, and all the variables
(-1x+2)(-20)-(-2x(x-4)+7)=0
We multiply parentheses ..
(+20x-40)-(-2x(x-4)+7)=0
We calculate terms in parentheses: -(-2x(x-4)+7), so:We add all the numbers together, and all the variables
-2x(x-4)+7
We multiply parentheses
-2x^2+8x+7
Back to the equation:
-(-2x^2+8x+7)
-(-2x^2+8x+7)+(20x-40)=0
We get rid of parentheses
2x^2-8x+20x-7-40=0
We add all the numbers together, and all the variables
2x^2+12x-47=0
a = 2; b = 12; c = -47;
Δ = b2-4ac
Δ = 122-4·2·(-47)
Δ = 520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{520}=\sqrt{4*130}=\sqrt{4}*\sqrt{130}=2\sqrt{130}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-2\sqrt{130}}{2*2}=\frac{-12-2\sqrt{130}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+2\sqrt{130}}{2*2}=\frac{-12+2\sqrt{130}}{4} $
| (X-2)(4x+5)-2x(x-4)=-5 | | 9*2x=108 | | 9x=12(0.98-x) | | (X-2)(x+5)+3x(x-4)=7 | | x=120(0.98-x)/90 | | 149=c2 | | c2=149 | | 4(c-6)=-16 | | (−2e+7)*(2e−10)=0 | | (−2e+7)(2e−10)=0 | | -2x-34=2x+2 | | 34e=70/2e | | -3x+13=2x+5 | | -3x-21=x+7 | | -2x+17=x+18 | | 7^(5x)=12 | | |7-2x|=|5-3x|+|x+2| | | x+4x+23=-17 | | 5(z-4)+8z-3=0 | | -15x-2x=16-(3x-9) | | 5x-3(4x-29)=31 | | 2.6x-15.78=-9.7x+27.27 | | 25+2r=65 | | 400x-3000/400x=0.30 | | 3x+5(4x-34)=37 | | 7x^2+80x-1200=0 | | 22-2j=8 | | 9x(5x–2)–x=8+(4–2x) | | 400x-3,000/400x=0.30 | | 12k/3+7k=5 | | -6x-(4x-34)=-56 | | 6-2/3(6b-9)=-5b-21 |