(-x/6)+5=(1/3)+x

Simple and best practice solution for (-x/6)+5=(1/3)+x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (-x/6)+5=(1/3)+x equation:



(-x/6)+5=(1/3)+x
We move all terms to the left:
(-x/6)+5-((1/3)+x)=0
Domain of the equation: 3)+x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(-x/6)-((+1/3)+x)+5=0
We get rid of parentheses
-x/6-((+1/3)+x)+5=0
We calculate fractions
(-3x^2)/18x+()/18x+5=0
We multiply all the terms by the denominator
(-3x^2)+5*18x+()=0
We add all the numbers together, and all the variables
(-3x^2)+5*18x=0
Wy multiply elements
(-3x^2)+90x=0
We get rid of parentheses
-3x^2+90x=0
a = -3; b = 90; c = 0;
Δ = b2-4ac
Δ = 902-4·(-3)·0
Δ = 8100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{8100}=90$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(90)-90}{2*-3}=\frac{-180}{-6} =+30 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(90)+90}{2*-3}=\frac{0}{-6} =0 $

See similar equations:

| m^2-40m=0 | | 6x+13=20+13 | | -x/6+5=1/3+x | | 7-n=8n | | 16x*9x=0 | | -19m+12=-14+8 | | 2.3/5.7=x | | 13+4x-9=7x7-3x | | 7x-3+x=53 | | -x2+64+36=0 | | 32=1/2(16)h | | y/6-5=1 | | 42*10^x/4=378 | | 24-s=15 | | (y+6)=5 | | -17=5x-7x+3 | | 5x+23=2x+9 | | 7-5k-5k=-23 | | 3(3b+2=30 | | b^2-3b-42=0 | | 9.50+8.50c=c | | 6x+3+6x=-141 | | 20^-6x=49 | | 11y-1=y+8 | | 10^3-x=35 | | 32+2x=96 | | 2x^2+47x-90=0 | | 100÷y=y | | 0=x^2-3x-22 | | 4(x-5)/3+2=8 | | 2/5x-3/4=-11/8 | | 4(y/2+5)=40 |

Equations solver categories