(-x2-2x)=(x2-4x-3)

Simple and best practice solution for (-x2-2x)=(x2-4x-3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (-x2-2x)=(x2-4x-3) equation:



(-x2-2x)=(x2-4x-3)
We move all terms to the left:
(-x2-2x)-((x2-4x-3))=0
We add all the numbers together, and all the variables
(-1x^2-2x)-((+x^2-4x-3))=0
We get rid of parentheses
-1x^2-((+x^2-4x-3))-2x=0
We calculate terms in parentheses: -((+x^2-4x-3)), so:
(+x^2-4x-3)
We get rid of parentheses
x^2-4x-3
Back to the equation:
-(x^2-4x-3)
We add all the numbers together, and all the variables
-1x^2-2x-(x^2-4x-3)=0
We get rid of parentheses
-1x^2-x^2-2x+4x+3=0
We add all the numbers together, and all the variables
-2x^2+2x+3=0
a = -2; b = 2; c = +3;
Δ = b2-4ac
Δ = 22-4·(-2)·3
Δ = 28
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{28}=\sqrt{4*7}=\sqrt{4}*\sqrt{7}=2\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{7}}{2*-2}=\frac{-2-2\sqrt{7}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{7}}{2*-2}=\frac{-2+2\sqrt{7}}{-4} $

See similar equations:

| 8y=(2y+24) | | x(x+2)=-(x-1)(x-3) | | 4y=(8y-16) | | 2x=(3x-3) | | 3b-8=2b+15 | | 12y/y+4y^2/y=0 | | 54-n=222-n | | 74-52=33-n | | 28x=250 | | 99-30=33-n | | c+5=2c-12 | | 4p+1=-3p-2 | | x+x+3/4x+3=300 | | y=2×17 | | 2/3=v/8 | | y=X×2 | | t/10=15/25 | | .p-11=5 | | b^2+9b-24=0 | | 86+u=99 | | 10/3=8/k | | 10^-7x-9=51 | | 2(e-2)=-3-2e | | 5(x+3)+3(x-5)=5x+15+3x-15=8x | | 27−2x2=−53 | | 4(b+3)+4=2b-3(b-2) | | 3(r+6)=-2(r+1) | | 5y+8+6y-18=5y+6y+8-18=11y-10 | | 9x-4x+x=5x+x=6x | | 8=q/2-–7 | | 1/2m-3/m=5/2 | | x(x-5)-(x-5)(3x+2)=0 |

Equations solver categories