If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (0.102)(0.215 + -1x)(0.215 + -1x) = x Multiply (0.215 + -1x) * (0.215 + -1x) 0.102(0.215(0.215 + -1x) + -1x * (0.215 + -1x)) = x 0.102((0.215 * 0.215 + -1x * 0.215) + -1x * (0.215 + -1x)) = x 0.102((0.046225 + -0.215x) + -1x * (0.215 + -1x)) = x 0.102(0.046225 + -0.215x + (0.215 * -1x + -1x * -1x)) = x 0.102(0.046225 + -0.215x + (-0.215x + 1x2)) = x Combine like terms: -0.215x + -0.215x = -0.43x 0.102(0.046225 + -0.43x + 1x2) = x (0.046225 * 0.102 + -0.43x * 0.102 + 1x2 * 0.102) = x (0.00471495 + -0.04386x + 0.102x2) = x Solving 0.00471495 + -0.04386x + 0.102x2 = x Solving for variable 'x'. Reorder the terms: 0.00471495 + -0.04386x + -1x + 0.102x2 = x + -1x Combine like terms: -0.04386x + -1x = -1.04386x 0.00471495 + -1.04386x + 0.102x2 = x + -1x Combine like terms: x + -1x = 0 0.00471495 + -1.04386x + 0.102x2 = 0 Begin completing the square. Divide all terms by 0.102 the coefficient of the squared term: Divide each side by '0.102'. 0.046225 + -10.23392157x + x2 = 0 Move the constant term to the right: Add '-0.046225' to each side of the equation. 0.046225 + -10.23392157x + -0.046225 + x2 = 0 + -0.046225 Reorder the terms: 0.046225 + -0.046225 + -10.23392157x + x2 = 0 + -0.046225 Combine like terms: 0.046225 + -0.046225 = 0.000000 0.000000 + -10.23392157x + x2 = 0 + -0.046225 -10.23392157x + x2 = 0 + -0.046225 Combine like terms: 0 + -0.046225 = -0.046225 -10.23392157x + x2 = -0.046225 The x term is -10.23392157x. Take half its coefficient (-5.116960785). Square it (26.18328768) and add it to both sides. Add '26.18328768' to each side of the equation. -10.23392157x + 26.18328768 + x2 = -0.046225 + 26.18328768 Reorder the terms: 26.18328768 + -10.23392157x + x2 = -0.046225 + 26.18328768 Combine like terms: -0.046225 + 26.18328768 = 26.13706268 26.18328768 + -10.23392157x + x2 = 26.13706268 Factor a perfect square on the left side: (x + -5.116960785)(x + -5.116960785) = 26.13706268 Calculate the square root of the right side: 5.112441949 Break this problem into two subproblems by setting (x + -5.116960785) equal to 5.112441949 and -5.112441949.Subproblem 1
x + -5.116960785 = 5.112441949 Simplifying x + -5.116960785 = 5.112441949 Reorder the terms: -5.116960785 + x = 5.112441949 Solving -5.116960785 + x = 5.112441949 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '5.116960785' to each side of the equation. -5.116960785 + 5.116960785 + x = 5.112441949 + 5.116960785 Combine like terms: -5.116960785 + 5.116960785 = 0.000000000 0.000000000 + x = 5.112441949 + 5.116960785 x = 5.112441949 + 5.116960785 Combine like terms: 5.112441949 + 5.116960785 = 10.229402734 x = 10.229402734 Simplifying x = 10.229402734Subproblem 2
x + -5.116960785 = -5.112441949 Simplifying x + -5.116960785 = -5.112441949 Reorder the terms: -5.116960785 + x = -5.112441949 Solving -5.116960785 + x = -5.112441949 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '5.116960785' to each side of the equation. -5.116960785 + 5.116960785 + x = -5.112441949 + 5.116960785 Combine like terms: -5.116960785 + 5.116960785 = 0.000000000 0.000000000 + x = -5.112441949 + 5.116960785 x = -5.112441949 + 5.116960785 Combine like terms: -5.112441949 + 5.116960785 = 0.004518836 x = 0.004518836 Simplifying x = 0.004518836Solution
The solution to the problem is based on the solutions from the subproblems. x = {10.229402734, 0.004518836}
| -x-4*0= | | (4x-7)(2x-3)=0 | | -x*4= | | 2x+7+x=-14+3x+21 | | 2x+7+x=14+3x+21 | | 45x+85y=40 | | 5(x-3)=-2x+20 | | 46x+85y=23yx | | 46x+85y=23yz | | 2y+2=y | | x^2+14x-33=0 | | 14=11x-30 | | 3x^2+2y^3-18xy+30=0 | | .5x-3= | | 8+2e^1=12 | | x^2-50x-2400=0 | | -14=7t | | -16t^2+64t+200=0 | | -16t^2+64t+200=0 | | 27-4(x-4)=8x-45 | | 0.2x^2-0.8x-0.2=0 | | -4xy+7xy= | | 5x+3(2x+3)=31 | | (k*0.35)+25.95= | | 4(2x-3)=7(x+1) | | (k+0.35)+25.95= | | y-2(y-2)=6 | | 10x+x=3x | | x^4-10x+10=0 | | 5-x= | | 6.4+3.6y= | | ln(x^2-1)+ln(x)=ln(x^2) |