(1)/(2)w-(3)/(4)=(2)/(3)w+2

Simple and best practice solution for (1)/(2)w-(3)/(4)=(2)/(3)w+2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1)/(2)w-(3)/(4)=(2)/(3)w+2 equation:



(1)/(2)w-(3)/(4)=(2)/(3)w+2
We move all terms to the left:
(1)/(2)w-(3)/(4)-((2)/(3)w+2)=0
Domain of the equation: 2w!=0
w!=0/2
w!=0
w∈R
Domain of the equation: 3w+2)!=0
w∈R
We get rid of parentheses
1/2w-2/3w-2-3/4=0
We calculate fractions
(-54w^2)/96w^2+48w/96w^2+(-64w)/96w^2-2=0
We multiply all the terms by the denominator
(-54w^2)+48w+(-64w)-2*96w^2=0
Wy multiply elements
(-54w^2)-192w^2+48w+(-64w)=0
We get rid of parentheses
-54w^2-192w^2+48w-64w=0
We add all the numbers together, and all the variables
-246w^2-16w=0
a = -246; b = -16; c = 0;
Δ = b2-4ac
Δ = -162-4·(-246)·0
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{256}=16$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-16}{2*-246}=\frac{0}{-492} =0 $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+16}{2*-246}=\frac{32}{-492} =-8/123 $

See similar equations:

| t+9=7+16 | | x-8/2=6.3 | | 2x/3+1=5x/6+2 | | z+5*2/4=z | | 180=15x-28 | | 3x-7=-7x+3 | | X+2x+3x-5x=4x-9 | | 360t^2-490=0 | | 1.3/0.9=w/7.2 | | 5.8=1.6x18xx | | 1/3(9x-18)+5=14 | | (1/2(4x+8)-8)/2=0 | | ((1/2(4x+8)-8))/2=0 | | m(m-1)=-25 | | (x-2)^=16 | | X=-0,4y | | 114+2(4g-3)=40 | | 15/4=24/n | | (T+2)=5x^2-2x | | 3m-4=-(2m-15) | | 5/x=1.6 | | 3m-4=-(2-15) | | 9x^2+57x-42=0 | | 9x^2+57-42=0 | | (x^2)+3=17 | | ⅜q=−½ | | 1/3(2x-9)=6 | | 3(x+2)-2(x+1)=0 | | -18=3x/7 | | 16m+7=16m+6m | | -4.7=3y | | x=90-8x-20 |

Equations solver categories