If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1)/(2)x+84=(2)/(3)x
We move all terms to the left:
(1)/(2)x+84-((2)/(3)x)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 3x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
1/2x-(+2/3x)+84=0
We get rid of parentheses
1/2x-2/3x+84=0
We calculate fractions
3x/6x^2+(-4x)/6x^2+84=0
We multiply all the terms by the denominator
3x+(-4x)+84*6x^2=0
Wy multiply elements
504x^2+3x+(-4x)=0
We get rid of parentheses
504x^2+3x-4x=0
We add all the numbers together, and all the variables
504x^2-1x=0
a = 504; b = -1; c = 0;
Δ = b2-4ac
Δ = -12-4·504·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-1}{2*504}=\frac{0}{1008} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+1}{2*504}=\frac{2}{1008} =1/504 $
| 11=c/24 | | 2/3(6x+9)=14 | | 180-(4x+8)=180-((2x+3)+51) | | 2x-5+8x-15°=180 | | b+8=96 | | y=0.97*13+1.29 | | (U-7)^2=2u^2-18u+37 | | 2(j+3)=20 | | g+17=62 | | 3/5x-7/10x+1/2x=-56 | | y=0.97*12+1.29 | | -13.8b+8.74=-19.98-14.6b+14.48 | | 2x2-24=10 | | 2d+83=13+12d1 | | -2(-3x-7)=5(-1+5x) | | y=0.97*11+1.29 | | -3x-8=6-2 | | 6/100=x/550 | | y=0.97*10+1.29 | | 3+h+h+h+2=3h+5 | | 22+n=-1@ | | -24=3b+-12 | | 3n=2(54) | | 0=u^2-4u-12 | | -17n-16=-9n+8 | | y=0.97*9+1.29 | | (c/4)-6=20 | | 7x^2+8x=27 | | 2x-5+6=11 | | 70=7j | | 0.1(z-4.2)=0.48 | | (2n-2)^2=4 |