(1)/(2)x+x=180-x

Simple and best practice solution for (1)/(2)x+x=180-x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1)/(2)x+x=180-x equation:



(1)/(2)x+x=180-x
We move all terms to the left:
(1)/(2)x+x-(180-x)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We add all the numbers together, and all the variables
1/2x+x-(-1x+180)=0
We add all the numbers together, and all the variables
x+1/2x-(-1x+180)=0
We get rid of parentheses
x+1/2x+1x-180=0
We multiply all the terms by the denominator
x*2x+1x*2x-180*2x+1=0
Wy multiply elements
2x^2+2x^2-360x+1=0
We add all the numbers together, and all the variables
4x^2-360x+1=0
a = 4; b = -360; c = +1;
Δ = b2-4ac
Δ = -3602-4·4·1
Δ = 129584
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{129584}=\sqrt{16*8099}=\sqrt{16}*\sqrt{8099}=4\sqrt{8099}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-360)-4\sqrt{8099}}{2*4}=\frac{360-4\sqrt{8099}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-360)+4\sqrt{8099}}{2*4}=\frac{360+4\sqrt{8099}}{8} $

See similar equations:

| y^2-132=y | | 200=120(1+0.05x) | | 5y+3y+3y+63=360 | | 3(r)=3.14r^2 | | 2+4/7=7/12y | | 3x•6=72 | | 143=y=25 | | 9x+3x-9x=6+8x-11X | | x(3x-10)+70=180 | | z^2-18=-11 | | 8k+5=6k+7 | | 7n^2-5n+8=0 | | x+73=93 | | 8y^2+6y+9=0 | | 6/7+s=16 | | x{3}+4=9 | | 6x8=50 | | 28-2x=6x+4 | | -98=-4.9x | | (X+60)(2x+50)(3x+10)=360 | | 3p-6+p+4=180 | | 9=7z-12 | | 8n=208n=208 | | 6.9s=82.8 | | 4(3x-7)^2=49 | | 4(2x-4)=5+3 | | n/6=5.9 | | 5x-3-8x=14+5x-1 | | (x+3.5)/2=1.5 | | 2x+16=18x-15 | | 4.2f=42 | | 4.8=b/2 |

Equations solver categories