(1)/(2)x-(4)/(5)x=10-19

Simple and best practice solution for (1)/(2)x-(4)/(5)x=10-19 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1)/(2)x-(4)/(5)x=10-19 equation:



(1)/(2)x-(4)/(5)x=10-19
We move all terms to the left:
(1)/(2)x-(4)/(5)x-(10-19)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
We add all the numbers together, and all the variables
1/2x-4/5x-(-9)=0
We add all the numbers together, and all the variables
1/2x-4/5x+9=0
We calculate fractions
5x/10x^2+(-8x)/10x^2+9=0
We multiply all the terms by the denominator
5x+(-8x)+9*10x^2=0
Wy multiply elements
90x^2+5x+(-8x)=0
We get rid of parentheses
90x^2+5x-8x=0
We add all the numbers together, and all the variables
90x^2-3x=0
a = 90; b = -3; c = 0;
Δ = b2-4ac
Δ = -32-4·90·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{9}=3$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-3}{2*90}=\frac{0}{180} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+3}{2*90}=\frac{6}{180} =1/30 $

See similar equations:

| 22x+84=22x+10 | | 2m3+4m=15−2m | | 6x+14x-6=5(4x+10) | | 4x+3(x+4)=40 | | 7x^2-38=5x | | 5.3c+15+-3c=16.84 | | R^2-76=-5r | | y+2(y-5)=2y+22 | | 3x^2+7x=9x-5x | | 3w=−18 | | 11(p-3)=5(p+3 | | 3X^2-20=x^2-2 | | (15*2)/3=2x | | 2g−13=32 | | 4x+x+5=11x-6x=5 | | -2/3(-4+10x)=12+4x | | 6a^2=28-2a | | x/2−20=−14 | | (x/7)=(15/3)+2 | | -(6)/(7)y=-(1)/(14) | | 8=2+2m-2 | | 3n-15=63 | | 4.7g+8=1.7g+23. | | 39x+1,061x-90=22(50x+74) | | 1+5n-n=17 | | 7x-9x2=5x-9 | | 3n^2-8n+4=4 | | 14(-18+b)=-378 | | f(-5)=20+1 | | -43=-5x^2+22 | | 2h+2(h+4)=26 | | -(3)/(4)v=(9)/(14) |

Equations solver categories