(1)/(2)x-9=(1)/(4)x+3

Simple and best practice solution for (1)/(2)x-9=(1)/(4)x+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1)/(2)x-9=(1)/(4)x+3 equation:



(1)/(2)x-9=(1)/(4)x+3
We move all terms to the left:
(1)/(2)x-9-((1)/(4)x+3)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 4x+3)!=0
x∈R
We get rid of parentheses
1/2x-1/4x-3-9=0
We calculate fractions
4x/8x^2+(-2x)/8x^2-3-9=0
We add all the numbers together, and all the variables
4x/8x^2+(-2x)/8x^2-12=0
We multiply all the terms by the denominator
4x+(-2x)-12*8x^2=0
Wy multiply elements
-96x^2+4x+(-2x)=0
We get rid of parentheses
-96x^2+4x-2x=0
We add all the numbers together, and all the variables
-96x^2+2x=0
a = -96; b = 2; c = 0;
Δ = b2-4ac
Δ = 22-4·(-96)·0
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{4}=2$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2}{2*-96}=\frac{-4}{-192} =1/48 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2}{2*-96}=\frac{0}{-192} =0 $

See similar equations:

| T=3s+4.87 | | 6(2x+10)=-5(-x-5 | | (8a+7)+(5a-3)= | | 5x-17=35 | | 4(k+1)=6k-1 | | 3(-2x+10)=-6 | | 12+6b=-126 | | 8(9+3z)=48 | | 5+4(6n-3)=185 | | ((3*4^3)-4(6+4))/9=x | | 83x+15x=-25 | | 12+5n-3n=n+2 | | 6/x-2=5/x-3 | | 10y=6y+40 | | x4+6=-2 | | 30x+20=950 | | (9x-43)+(3x+7)=180 | | -5k+9=-9-8k | | p+2/9=1 | | 5x(x-1)=22 | | (3f-2)/(-7)=4 | | -4m+-20=2m+8+m | | 8+3x=6x+ | | 16x-3=14x+13 | | 6x-7x=2 | | -1/8x+7=13 | | 8x+16-5x+4=x | | a/20+1=6 | | b-3=-19 | | F(t)=45/4t-31 | | -4n+6=-5n | | 6(x+9)=3x-4 |

Equations solver categories