(1)/(4x)=(5)/(6x)-7

Simple and best practice solution for (1)/(4x)=(5)/(6x)-7 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1)/(4x)=(5)/(6x)-7 equation:



(1)/(4x)=(5)/(6x)-7
We move all terms to the left:
(1)/(4x)-((5)/(6x)-7)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
Domain of the equation: 6x-7)!=0
x∈R
We get rid of parentheses
1/4x-5/6x+7=0
We calculate fractions
6x/24x^2+(-20x)/24x^2+7=0
We multiply all the terms by the denominator
6x+(-20x)+7*24x^2=0
Wy multiply elements
168x^2+6x+(-20x)=0
We get rid of parentheses
168x^2+6x-20x=0
We add all the numbers together, and all the variables
168x^2-14x=0
a = 168; b = -14; c = 0;
Δ = b2-4ac
Δ = -142-4·168·0
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{196}=14$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-14}{2*168}=\frac{0}{336} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+14}{2*168}=\frac{28}{336} =1/12 $

See similar equations:

| 9a=1=5a+11 | | 4x4=20= | | 5(7-5r)-6=154 | | 100x-x=23 | | 10x+5/4x+2=0 | | 8(e+3)=64 | | 5-t-3=0 | | -5n+5(-2n+6)=-5(n+4) | | 0.2=x/40+x | | 2(3x*1x)+2(3x*2x)+2(1x*2x)=88 | | -2(3n-4)=-6n=4 | | 5.7x+8=-4.9+6(x+7.2) | | 0.95*200-100=x | | 0.9*200-100=x | | -2(8u-5)+u=-5(u+1) | | (3/2x-2/3x)=12 | | 3x+2x(x-1)=10 | | 12y+6=6)2y+1) | | -10=n-6+3n | | -2=x-8-1 | | 11=7x+5-6x | | -5p-6p=-22 | | -3k-8k=-22 | | -4m-7+6=3 | | -x+20=-15x | | 47=(5+6x) | | 1/2d=6 | | 70=(6x+2) | | 2=2(g-4) | | 11=-1-c2 | | 23+2b=95 | | -6=-3(d-7) |

Equations solver categories