(1)/(t-1)+(t)/(6t-5)=(1)/(6)

Simple and best practice solution for (1)/(t-1)+(t)/(6t-5)=(1)/(6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1)/(t-1)+(t)/(6t-5)=(1)/(6) equation:


D( t )

t-1 = 0

6*t-5 = 0

t-1 = 0

t-1 = 0

t-1 = 0 // + 1

t = 1

6*t-5 = 0

6*t-5 = 0

6*t-5 = 0 // + 5

6*t = 5 // : 6

t = 5/6

t in (-oo:5/6) U (5/6:1) U (1:+oo)

1/(t-1)+t/(6*t-5) = 1/6 // - 1/6

1/(t-1)+t/(6*t-5)-(1/6) = 0

1/(t-1)+t/(6*t-5)-1/6 = 0

(1*6*(6*t-5))/(6*(t-1)*(6*t-5))+(6*t*(t-1))/(6*(t-1)*(6*t-5))+(-1*(t-1)*(6*t-5))/(6*(t-1)*(6*t-5)) = 0

1*6*(6*t-5)+6*t*(t-1)-1*(t-1)*(6*t-5) = 0

6*t^2-6*t^2+30*t+11*t-30-5 = 0

41*t-35 = 0

(41*t-35)/(6*(t-1)*(6*t-5)) = 0

(41*t-35)/(6*(t-1)*(6*t-5)) = 0 // * 6*(t-1)*(6*t-5)

41*t-35 = 0

41*t-35 = 0 // + 35

41*t = 35 // : 41

t = 35/41

t = 35/41

See similar equations:

| 4x+58=5y-2 | | 0=-7x^2+2x+6 | | 0=-4x^2+5x+5 | | 3p(2x+3)=15 | | x-13=4(3x-4(x-2)) | | 4=-16/j | | .8x+.05(6-x)=.10(-42) | | 0.33y-5=3 | | x+(x/4)+(x/2)=100 | | 7+8=127 | | 1/5(10j+5k) | | y=2(3)+6 | | a+7/8-a-2/3=4/3 | | 54x^2+36x+6=0 | | -10x-64=118+3x | | 11-12x=-10x-37 | | -168=8(7x+14) | | 12=i*10 | | -60=6x+3(4x+10) | | -2x-51=102-11x | | 7x-6(4x+18)=-193 | | -4x-7(-x-3)=51 | | 4x+63=-7x-124 | | y+6(5)=8 | | y+6(-1)=8 | | w^2=5w+24 | | p^2-8p-96=0 | | 3(a-10)=33 | | 3b+(b-2)+5a= | | 3a+(4a+5b)= | | 3a+(4a+56)= | | 203-4x=32x+19 |

Equations solver categories