(1+4p)=(4p-1)(p+2)

Simple and best practice solution for (1+4p)=(4p-1)(p+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1+4p)=(4p-1)(p+2) equation:



(1+4p)=(4p-1)(p+2)
We move all terms to the left:
(1+4p)-((4p-1)(p+2))=0
We add all the numbers together, and all the variables
(4p+1)-((4p-1)(p+2))=0
We get rid of parentheses
4p-((4p-1)(p+2))+1=0
We multiply parentheses ..
-((+4p^2+8p-1p-2))+4p+1=0
We calculate terms in parentheses: -((+4p^2+8p-1p-2)), so:
(+4p^2+8p-1p-2)
We get rid of parentheses
4p^2+8p-1p-2
We add all the numbers together, and all the variables
4p^2+7p-2
Back to the equation:
-(4p^2+7p-2)
We add all the numbers together, and all the variables
4p-(4p^2+7p-2)+1=0
We get rid of parentheses
-4p^2+4p-7p+2+1=0
We add all the numbers together, and all the variables
-4p^2-3p+3=0
a = -4; b = -3; c = +3;
Δ = b2-4ac
Δ = -32-4·(-4)·3
Δ = 57
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-\sqrt{57}}{2*-4}=\frac{3-\sqrt{57}}{-8} $
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+\sqrt{57}}{2*-4}=\frac{3+\sqrt{57}}{-8} $

See similar equations:

| 0.2x+5=0.5x+2 | | -10-(-6x)=-1x | | 30=(2x+1) | | X+3/8x=121 | | X+3/8x=122 | | 9x≥=3 | | -936x^2+432x+2800=0 | | (2x-7)=57 | | 4+30-5x/9=-1 | | –9=3(g+–5) | | 59x=1121 | | -28+7x–12=4.8x+26 | | 9x+12x+6x=360 | | 2h÷15=2 | | 5x+13=3x-8 | | −8+2x+14=4x−16 | | 6+3x−4=−5+3x+7 | | x8=822 | | 1/4r,+2=10 | | -5+x=1-(2-3x) | | 5(68-y)+10y=540 | | 6-x=3(2-5x) | | 4x+3=(x+4)x3 | | 4x+3=x+4x3 | | 3-2(2x-1)=x | | 1-x=2-(1-x) | | 4=1x÷2+1 | | Y=3.5x+67 | | -24d+14=104+102 | | 2(1-x)=-(x-1) | | -20+2c=-22-16 | | 2(x-1)=-2+x |

Equations solver categories