If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1-2y/3-y)+y=(1/y+2)
We move all terms to the left:
(1-2y/3-y)+y-((1/y+2))=0
Domain of the equation: 3-y)!=0
We move all terms containing y to the left, all other terms to the right
-y)!=-3
y!=-3/1
y!=-3
y∈R
Domain of the equation: y+2))!=0We add all the numbers together, and all the variables
y∈R
(-1y-2y/3+1)+y-((1/y+2))=0
We add all the numbers together, and all the variables
y+(-1y-2y/3+1)-((1/y+2))=0
We get rid of parentheses
y-1y-2y/3-((1/y+2))+1=0
We calculate fractions
(-2y^2)/3y+y-1y+()/3y+1=0
We add all the numbers together, and all the variables
(-2y^2)/3y+()/3y+1=0
We multiply all the terms by the denominator
(-2y^2)+1*3y+()=0
We add all the numbers together, and all the variables
(-2y^2)+1*3y=0
Wy multiply elements
(-2y^2)+3y=0
We get rid of parentheses
-2y^2+3y=0
a = -2; b = 3; c = 0;
Δ = b2-4ac
Δ = 32-4·(-2)·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3}{2*-2}=\frac{-6}{-4} =1+1/2 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3}{2*-2}=\frac{0}{-4} =0 $
| 1/3=a5/4 | | 8y=9y-11 | | 3(x+2)x=4 | | -17+3m=-1+6m-4m | | m-88=73 | | 15-4n=51 | | -17=3m=-1+6m-4m | | 999=-9-h | | -10k+12=-16-8k | | h^2=220 | | 2(2w+70=42 | | -3+14+y=12 | | 2x-3+3x+6=38 | | 33+19x=180 | | h^2=22 | | -p-1-p=-10-p | | 2+9j=10j+9 | | 3(2)^(6x)=99 | | 5a=-4 | | (3m+6)-2m=2 | | w-686=-41 | | -10y+4=8-8y | | -3(3y-1)+9y=9+2(7y-1) | | -8-7f=f | | 445+b=87 | | 2d+7d+7=-7+7d | | -3(6-3x)-5x=26+6x | | 2d+7d+7=-7=7d | | 3n^2+324=0 | | 11-3x=-77 | | 14w=266 | | -5(2w-2)+w=7(w+2) |