(1-x)(4x+17)=3x

Simple and best practice solution for (1-x)(4x+17)=3x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1-x)(4x+17)=3x equation:



(1-x)(4x+17)=3x
We move all terms to the left:
(1-x)(4x+17)-(3x)=0
We add all the numbers together, and all the variables
(-1x+1)(4x+17)-3x=0
We add all the numbers together, and all the variables
-3x+(-1x+1)(4x+17)=0
We multiply parentheses ..
(-4x^2-17x+4x+17)-3x=0
We get rid of parentheses
-4x^2-17x+4x-3x+17=0
We add all the numbers together, and all the variables
-4x^2-16x+17=0
a = -4; b = -16; c = +17;
Δ = b2-4ac
Δ = -162-4·(-4)·17
Δ = 528
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{528}=\sqrt{16*33}=\sqrt{16}*\sqrt{33}=4\sqrt{33}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-4\sqrt{33}}{2*-4}=\frac{16-4\sqrt{33}}{-8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+4\sqrt{33}}{2*-4}=\frac{16+4\sqrt{33}}{-8} $

See similar equations:

| 15y=44 | | -y/11=5 | | 10-15y=54 | | 4i=6i+4 | | 3x-5=-2.5x+3-(x-4) | | 5x-7=11x-7 | | (3/4)x=154 | | 5i=I+20 | | 9-3×(x-2)=x-1 | | -x16=48 | | x²-8x-36=0 | | 836=x²+85x | | 7x-10=1x+14 | | 43-7r=1 | | M=n(n+1)=110 | | 78a+2=42a+31 | | 10-3g,g=5 | | √3x-x=10 | | x2-20=8x | | 7a=12a-15 | | -2g=30 | | 7q=3q+8 | | -9=y/8 | | 64=h-27 | | 28=e-6 | | 2w2/2=225 | | 6g=4g+8 | | 3a+4​=4 | | -4x+8=3x-16 | | 5e=3e+4 | | 3x1,000=3× | | 3(2x+7)=6x+A |

Equations solver categories